android_frameworks_base/libs/hwui/DisplayListRenderer.h

576 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HWUI_DISPLAY_LIST_RENDERER_H
#define ANDROID_HWUI_DISPLAY_LIST_RENDERER_H
#include <SkChunkAlloc.h>
#include <SkFlattenable.h>
#include <SkMatrix.h>
#include <SkPaint.h>
#include <SkPath.h>
#include <SkRefCnt.h>
#include <SkTDArray.h>
#include <SkTSearch.h>
#include <cutils/compiler.h>
#include <utils/String8.h>
#include "DisplayListLogBuffer.h"
#include "OpenGLRenderer.h"
#include "utils/Functor.h"
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Defines
///////////////////////////////////////////////////////////////////////////////
#define MIN_WRITER_SIZE 4096
#define OP_MAY_BE_SKIPPED_MASK 0xff000000
// Debug
#if DEBUG_DISPLAY_LIST
#define DISPLAY_LIST_LOGD(...) ALOGD(__VA_ARGS__)
#else
#define DISPLAY_LIST_LOGD(...)
#endif
///////////////////////////////////////////////////////////////////////////////
// Display list
///////////////////////////////////////////////////////////////////////////////
class DisplayListRenderer;
/**
* Replays recorded drawing commands.
*/
class DisplayList {
public:
DisplayList(const DisplayListRenderer& recorder);
ANDROID_API ~DisplayList();
// IMPORTANT: Update the intialization of OP_NAMES in the .cpp file
// when modifying this file
enum Op {
// Non-drawing operations
Save = 0,
Restore,
RestoreToCount,
SaveLayer,
SaveLayerAlpha,
Translate,
Rotate,
Scale,
Skew,
SetMatrix,
ConcatMatrix,
ClipRect,
// Drawing operations
DrawDisplayList,
DrawLayer,
DrawBitmap,
DrawBitmapMatrix,
DrawBitmapRect,
DrawBitmapMesh,
DrawPatch,
DrawColor,
DrawRect,
DrawRoundRect,
DrawCircle,
DrawOval,
DrawArc,
DrawPath,
DrawLines,
DrawPoints,
DrawText,
DrawTextOnPath,
DrawPosText,
ResetShader,
SetupShader,
ResetColorFilter,
SetupColorFilter,
ResetShadow,
SetupShadow,
ResetPaintFilter,
SetupPaintFilter,
Use optimized display lists for all hwaccelerated rendering Previously, display lists were used only if hardware acceleration was enabled for an application (hardwareAccelerated=true) *and* if setDrawingCacheEnabled(true) was called. This change makes the framework use display lists for all views in an application if hardware acceleration is enabled. In addition, display list renderering has been optimized so that any view's recreation of its own display list (which is necessary whenever the visuals of that view change) will not cause any other display list in its parent hierarchy to change. Instead, when there are any visual changes in the hierarchy, only those views which need to have new display list content will recreate their display lists. This optimization works by caching display list references in each parent display list (so the container of some child will refer to its child's display list by a reference to the child's display list). Then when a view needs to recreate its display list, it will do so inside the same display list object. This will cause the content to get refreshed, but not the reference to that content. Then when the view hierarchy is redrawn, it will automatically pick up the new content from the old reference. This optimization will not necessarily improve performance when applications need to update the entire view hierarchy or redraw the entire screen, but it does show significant improvements when redrawing only a portion of the screen, especially when the regions that are not refreshed are complex and time- consuming to redraw. Change-Id: I68d21cac6a224a05703070ec85253220cb001eb4
2011-01-10 14:10:36 -08:00
DrawGLFunction,
};
// See flags defined in DisplayList.java
enum ReplayFlag {
kReplayFlag_ClipChildren = 0x1
};
static const char* OP_NAMES[];
void initFromDisplayListRenderer(const DisplayListRenderer& recorder, bool reusing = false);
ANDROID_API size_t getSize();
bool replay(OpenGLRenderer& renderer, Rect& dirty, int32_t flags, uint32_t level = 0);
void output(OpenGLRenderer& renderer, uint32_t level = 0);
ANDROID_API static void outputLogBuffer(int fd);
void setRenderable(bool renderable) {
mIsRenderable = renderable;
}
bool isRenderable() const {
return mIsRenderable;
}
void setName(const char* name) {
if (name) {
mName.setTo(name);
}
}
private:
void init();
void clearResources();
class TextContainer {
public:
size_t length() const {
return mByteLength;
}
const char* text() const {
return (const char*) mText;
}
size_t mByteLength;
const char* mText;
};
SkBitmap* getBitmap() {
return (SkBitmap*) getInt();
}
SkiaShader* getShader() {
return (SkiaShader*) getInt();
}
SkiaColorFilter* getColorFilter() {
return (SkiaColorFilter*) getInt();
}
inline int32_t getIndex() {
return mReader.readInt();
}
inline int32_t getInt() {
return mReader.readInt();
}
inline uint32_t getUInt() {
return mReader.readU32();
}
SkMatrix* getMatrix() {
return (SkMatrix*) getInt();
}
SkPath* getPath() {
return (SkPath*) getInt();
}
SkPaint* getPaint(OpenGLRenderer& renderer) {
return renderer.filterPaint((SkPaint*) getInt());
}
DisplayList* getDisplayList() {
return (DisplayList*) getInt();
}
inline float getFloat() {
return mReader.readScalar();
}
int32_t* getInts(uint32_t& count) {
count = getInt();
return (int32_t*) mReader.skip(count * sizeof(int32_t));
}
uint32_t* getUInts(int8_t& count) {
count = getInt();
return (uint32_t*) mReader.skip(count * sizeof(uint32_t));
}
float* getFloats(int32_t& count) {
count = getInt();
return (float*) mReader.skip(count * sizeof(float));
}
void getText(TextContainer* text) {
size_t length = text->mByteLength = getInt();
text->mText = (const char*) mReader.skip(length);
}
Vector<SkBitmap*> mBitmapResources;
Vector<SkiaColorFilter*> mFilterResources;
Vector<SkPaint*> mPaints;
Vector<SkPath*> mPaths;
Vector<SkMatrix*> mMatrices;
Vector<SkiaShader*> mShaders;
mutable SkFlattenableReadBuffer mReader;
size_t mSize;
bool mIsRenderable;
String8 mName;
};
///////////////////////////////////////////////////////////////////////////////
// Renderer
///////////////////////////////////////////////////////////////////////////////
/**
* Records drawing commands in a display list for latter playback.
*/
class DisplayListRenderer: public OpenGLRenderer {
public:
ANDROID_API DisplayListRenderer();
virtual ~DisplayListRenderer();
ANDROID_API DisplayList* getDisplayList(DisplayList* displayList);
virtual void setViewport(int width, int height);
virtual void prepareDirty(float left, float top, float right, float bottom, bool opaque);
virtual void finish();
virtual bool callDrawGLFunction(Functor *functor, Rect& dirty);
virtual void interrupt();
virtual void resume();
Use optimized display lists for all hwaccelerated rendering Previously, display lists were used only if hardware acceleration was enabled for an application (hardwareAccelerated=true) *and* if setDrawingCacheEnabled(true) was called. This change makes the framework use display lists for all views in an application if hardware acceleration is enabled. In addition, display list renderering has been optimized so that any view's recreation of its own display list (which is necessary whenever the visuals of that view change) will not cause any other display list in its parent hierarchy to change. Instead, when there are any visual changes in the hierarchy, only those views which need to have new display list content will recreate their display lists. This optimization works by caching display list references in each parent display list (so the container of some child will refer to its child's display list by a reference to the child's display list). Then when a view needs to recreate its display list, it will do so inside the same display list object. This will cause the content to get refreshed, but not the reference to that content. Then when the view hierarchy is redrawn, it will automatically pick up the new content from the old reference. This optimization will not necessarily improve performance when applications need to update the entire view hierarchy or redraw the entire screen, but it does show significant improvements when redrawing only a portion of the screen, especially when the regions that are not refreshed are complex and time- consuming to redraw. Change-Id: I68d21cac6a224a05703070ec85253220cb001eb4
2011-01-10 14:10:36 -08:00
virtual int save(int flags);
virtual void restore();
virtual void restoreToCount(int saveCount);
virtual int saveLayer(float left, float top, float right, float bottom,
SkPaint* p, int flags);
virtual int saveLayerAlpha(float left, float top, float right, float bottom,
int alpha, int flags);
virtual void translate(float dx, float dy);
virtual void rotate(float degrees);
virtual void scale(float sx, float sy);
virtual void skew(float sx, float sy);
virtual void setMatrix(SkMatrix* matrix);
virtual void concatMatrix(SkMatrix* matrix);
virtual bool clipRect(float left, float top, float right, float bottom, SkRegion::Op op);
virtual bool drawDisplayList(DisplayList* displayList, uint32_t width, uint32_t height,
Rect& dirty, int32_t flags, uint32_t level = 0);
virtual void drawLayer(Layer* layer, float x, float y, SkPaint* paint);
virtual void drawBitmap(SkBitmap* bitmap, float left, float top, SkPaint* paint);
virtual void drawBitmap(SkBitmap* bitmap, SkMatrix* matrix, SkPaint* paint);
virtual void drawBitmap(SkBitmap* bitmap, float srcLeft, float srcTop,
float srcRight, float srcBottom, float dstLeft, float dstTop,
float dstRight, float dstBottom, SkPaint* paint);
virtual void drawBitmapMesh(SkBitmap* bitmap, int meshWidth, int meshHeight,
float* vertices, int* colors, SkPaint* paint);
virtual void drawPatch(SkBitmap* bitmap, const int32_t* xDivs, const int32_t* yDivs,
const uint32_t* colors, uint32_t width, uint32_t height, int8_t numColors,
float left, float top, float right, float bottom, SkPaint* paint);
virtual void drawColor(int color, SkXfermode::Mode mode);
virtual void drawRect(float left, float top, float right, float bottom, SkPaint* paint);
virtual void drawRoundRect(float left, float top, float right, float bottom,
float rx, float ry, SkPaint* paint);
virtual void drawCircle(float x, float y, float radius, SkPaint* paint);
virtual void drawOval(float left, float top, float right, float bottom, SkPaint* paint);
virtual void drawArc(float left, float top, float right, float bottom,
float startAngle, float sweepAngle, bool useCenter, SkPaint* paint);
virtual void drawPath(SkPath* path, SkPaint* paint);
virtual void drawLines(float* points, int count, SkPaint* paint);
virtual void drawPoints(float* points, int count, SkPaint* paint);
virtual void drawText(const char* text, int bytesCount, int count, float x, float y,
SkPaint* paint, float length = 1.0f);
virtual void drawTextOnPath(const char* text, int bytesCount, int count, SkPath* path,
float hOffset, float vOffset, SkPaint* paint);
virtual void drawPosText(const char* text, int bytesCount, int count, const float* positions,
SkPaint* paint);
virtual void resetShader();
virtual void setupShader(SkiaShader* shader);
virtual void resetColorFilter();
virtual void setupColorFilter(SkiaColorFilter* filter);
virtual void resetShadow();
virtual void setupShadow(float radius, float dx, float dy, int color);
virtual void resetPaintFilter();
virtual void setupPaintFilter(int clearBits, int setBits);
ANDROID_API void reset();
const SkWriter32& writeStream() const {
return mWriter;
}
const Vector<SkBitmap*>& getBitmapResources() const {
return mBitmapResources;
}
const Vector<SkiaColorFilter*>& getFilterResources() const {
return mFilterResources;
}
const Vector<SkiaShader*>& getShaders() const {
return mShaders;
}
const Vector<SkPaint*>& getPaints() const {
return mPaints;
}
const Vector<SkPath*>& getPaths() const {
return mPaths;
}
const Vector<SkMatrix*>& getMatrices() const {
return mMatrices;
}
private:
void insertRestoreToCount() {
if (mRestoreSaveCount >= 0) {
mWriter.writeInt(DisplayList::RestoreToCount);
addInt(mRestoreSaveCount);
mRestoreSaveCount = -1;
}
}
void insertTranlate() {
if (mHasTranslate) {
if (mTranslateX != 0.0f || mTranslateY != 0.0f) {
mWriter.writeInt(DisplayList::Translate);
addPoint(mTranslateX, mTranslateY);
mTranslateX = mTranslateY = 0.0f;
}
mHasTranslate = false;
}
}
inline void addOp(const DisplayList::Op drawOp) {
insertRestoreToCount();
insertTranlate();
mWriter.writeInt(drawOp);
mHasDrawOps = mHasDrawOps || drawOp >= DisplayList::DrawDisplayList;
}
uint32_t* addOp(const DisplayList::Op drawOp, const bool reject) {
insertRestoreToCount();
insertTranlate();
mHasDrawOps = mHasDrawOps || drawOp >= DisplayList::DrawDisplayList;
if (reject) {
mWriter.writeInt(OP_MAY_BE_SKIPPED_MASK | drawOp);
mWriter.writeInt(0);
uint32_t* location = reject ? mWriter.peek32(mWriter.size() - 4) : NULL;
return location;
}
mWriter.writeInt(drawOp);
return NULL;
}
inline void addSkip(uint32_t* location) {
if (location) {
*location = (int32_t) (mWriter.peek32(mWriter.size() - 4) - location);
}
}
inline void addInt(int32_t value) {
mWriter.writeInt(value);
}
inline void addSize(uint32_t w, uint32_t h) {
mWriter.writeInt(w);
mWriter.writeInt(h);
}
void addInts(const int32_t* values, uint32_t count) {
mWriter.writeInt(count);
for (uint32_t i = 0; i < count; i++) {
mWriter.writeInt(values[i]);
}
}
void addUInts(const uint32_t* values, int8_t count) {
mWriter.writeInt(count);
for (int8_t i = 0; i < count; i++) {
mWriter.writeInt(values[i]);
}
}
inline void addFloat(float value) {
mWriter.writeScalar(value);
}
void addFloats(const float* values, int32_t count) {
mWriter.writeInt(count);
for (int32_t i = 0; i < count; i++) {
mWriter.writeScalar(values[i]);
}
}
inline void addPoint(float x, float y) {
mWriter.writeScalar(x);
mWriter.writeScalar(y);
}
inline void addBounds(float left, float top, float right, float bottom) {
mWriter.writeScalar(left);
mWriter.writeScalar(top);
mWriter.writeScalar(right);
mWriter.writeScalar(bottom);
}
inline void addText(const void* text, size_t byteLength) {
mWriter.writeInt(byteLength);
mWriter.writePad(text, byteLength);
}
inline void addPath(SkPath* path) {
if (!path) {
addInt((int) NULL);
return;
}
SkPath* pathCopy = mPathMap.valueFor(path);
if (pathCopy == NULL || pathCopy->getGenerationID() != path->getGenerationID()) {
pathCopy = new SkPath(*path);
pathCopy->setSourcePath(path);
// replaceValueFor() performs an add if the entry doesn't exist
mPathMap.replaceValueFor(path, pathCopy);
mPaths.add(pathCopy);
}
addInt((int) pathCopy);
}
inline void addPaint(SkPaint* paint) {
if (!paint) {
addInt((int) NULL);
return;
}
SkPaint* paintCopy = mPaintMap.valueFor(paint);
if (paintCopy == NULL || paintCopy->getGenerationID() != paint->getGenerationID()) {
paintCopy = new SkPaint(*paint);
// replaceValueFor() performs an add if the entry doesn't exist
mPaintMap.replaceValueFor(paint, paintCopy);
mPaints.add(paintCopy);
}
addInt((int) paintCopy);
}
inline void addDisplayList(DisplayList* displayList) {
// TODO: To be safe, the display list should be ref-counted in the
// resources cache, but we rely on the caller (UI toolkit) to
// do the right thing for now
addInt((int) displayList);
}
inline void addMatrix(SkMatrix* matrix) {
// Copying the matrix is cheap and prevents against the user changing the original
// matrix before the operation that uses it
SkMatrix* copy = new SkMatrix(*matrix);
addInt((int) copy);
mMatrices.add(copy);
}
inline void addBitmap(SkBitmap* bitmap) {
// Note that this assumes the bitmap is immutable. There are cases this won't handle
// correctly, such as creating the bitmap from scratch, drawing with it, changing its
// contents, and drawing again. The only fix would be to always copy it the first time,
// which doesn't seem worth the extra cycles for this unlikely case.
addInt((int) bitmap);
mBitmapResources.add(bitmap);
Caches::getInstance().resourceCache.incrementRefcount(bitmap);
}
inline void addShader(SkiaShader* shader) {
if (!shader) {
addInt((int) NULL);
return;
}
SkiaShader* shaderCopy = mShaderMap.valueFor(shader);
// TODO: We also need to handle generation ID changes in compose shaders
if (shaderCopy == NULL || shaderCopy->getGenerationId() != shader->getGenerationId()) {
shaderCopy = shader->copy();
// replaceValueFor() performs an add if the entry doesn't exist
mShaderMap.replaceValueFor(shader, shaderCopy);
mShaders.add(shaderCopy);
Caches::getInstance().resourceCache.incrementRefcount(shaderCopy);
}
addInt((int) shaderCopy);
}
inline void addColorFilter(SkiaColorFilter* colorFilter) {
addInt((int) colorFilter);
mFilterResources.add(colorFilter);
Caches::getInstance().resourceCache.incrementRefcount(colorFilter);
}
Vector<SkBitmap*> mBitmapResources;
Vector<SkiaColorFilter*> mFilterResources;
Vector<SkPaint*> mPaints;
DefaultKeyedVector<SkPaint*, SkPaint*> mPaintMap;
Vector<SkPath*> mPaths;
DefaultKeyedVector<SkPath*, SkPath*> mPathMap;
Vector<SkiaShader*> mShaders;
DefaultKeyedVector<SkiaShader*, SkiaShader*> mShaderMap;
Vector<SkMatrix*> mMatrices;
SkWriter32 mWriter;
int mRestoreSaveCount;
float mTranslateX;
float mTranslateY;
bool mHasTranslate;
bool mHasDrawOps;
friend class DisplayList;
}; // class DisplayListRenderer
}; // namespace uirenderer
}; // namespace android
#endif // ANDROID_HWUI_DISPLAY_LIST_RENDERER_H