1380 lines
49 KiB
C++
Raw Normal View History

/*
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* A service that exchanges time synchronization information between
* a master that defines a timeline and clients that follow the timeline.
*/
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
#define LOG_TAG "common_time"
#include <utils/Log.h>
#include <arpa/inet.h>
#include <assert.h>
#include <fcntl.h>
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
#include <limits>
#include <linux/if_ether.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <netinet/ip.h>
#include <poll.h>
#include <stdio.h>
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <common_time/local_clock.h>
#include <binder/IPCThreadState.h>
#include <binder/ProcessState.h>
#include <utils/Timers.h>
#include "common_clock_service.h"
#include "common_time_config_service.h"
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
#include "common_time_server.h"
#include "common_time_server_packets.h"
#include "clock_recovery.h"
#include "common_clock.h"
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
using std::numeric_limits;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
namespace android {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
const char* CommonTimeServer::kDefaultMasterElectionAddr = "239.195.128.88";
const uint16_t CommonTimeServer::kDefaultMasterElectionPort = 8887;
const uint64_t CommonTimeServer::kDefaultSyncGroupID = 0;
const uint8_t CommonTimeServer::kDefaultMasterPriority = 1;
const uint32_t CommonTimeServer::kDefaultMasterAnnounceIntervalMs = 10000;
const uint32_t CommonTimeServer::kDefaultSyncRequestIntervalMs = 1000;
const uint32_t CommonTimeServer::kDefaultPanicThresholdUsec = 50000;
const bool CommonTimeServer::kDefaultAutoDisable = true;
const int CommonTimeServer::kSetupRetryTimeout = 30000;
const int64_t CommonTimeServer::kNoGoodDataPanicThreshold = 600000000ll;
// timeout value representing an infinite timeout
const int CommonTimeServer::kInfiniteTimeout = -1;
/*** Initial state constants ***/
// number of WhoIsMaster attempts sent before giving up
const int CommonTimeServer::kInitial_NumWhoIsMasterRetries = 6;
// timeout used when waiting for a response to a WhoIsMaster request
const int CommonTimeServer::kInitial_WhoIsMasterTimeoutMs = 500;
/*** Client state constants ***/
// number of sync requests that can fail before a client assumes its master
// is dead
const int CommonTimeServer::kClient_NumSyncRequestRetries = 5;
/*** Master state constants ***/
/*** Ronin state constants ***/
// number of WhoIsMaster attempts sent before declaring ourselves master
const int CommonTimeServer::kRonin_NumWhoIsMasterRetries = 4;
// timeout used when waiting for a response to a WhoIsMaster request
const int CommonTimeServer::kRonin_WhoIsMasterTimeoutMs = 500;
/*** WaitForElection state constants ***/
// how long do we wait for an announcement from a master before
// trying another election?
const int CommonTimeServer::kWaitForElection_TimeoutMs = 5000;
CommonTimeServer::CommonTimeServer()
: Thread(false)
, mState(ICommonClock::STATE_INITIAL)
, mClockRecovery(&mLocalClock, &mCommonClock)
, mSocket(-1)
, mLastPacketRxLocalTime(0)
, mTimelineID(ICommonClock::kInvalidTimelineID)
, mClockSynced(false)
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
, mCommonClockHasClients(false)
, mInitial_WhoIsMasterRequestTimeouts(0)
, mClient_MasterDeviceID(0)
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
, mClient_MasterDevicePriority(0)
, mRonin_WhoIsMasterRequestTimeouts(0) {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// zero out sync stats
resetSyncStats();
// Setup the master election endpoint to use the default.
struct sockaddr_in* meep =
reinterpret_cast<struct sockaddr_in*>(&mMasterElectionEP);
memset(&mMasterElectionEP, 0, sizeof(mMasterElectionEP));
inet_aton(kDefaultMasterElectionAddr, &meep->sin_addr);
meep->sin_family = AF_INET;
meep->sin_port = htons(kDefaultMasterElectionPort);
// Zero out the master endpoint.
memset(&mMasterEP, 0, sizeof(mMasterEP));
mMasterEPValid = false;
mBindIfaceValid = false;
setForceLowPriority(false);
// Set all remaining configuration parameters to their defaults.
mDeviceID = 0;
mSyncGroupID = kDefaultSyncGroupID;
mMasterPriority = kDefaultMasterPriority;
mMasterAnnounceIntervalMs = kDefaultMasterAnnounceIntervalMs;
mSyncRequestIntervalMs = kDefaultSyncRequestIntervalMs;
mPanicThresholdUsec = kDefaultPanicThresholdUsec;
mAutoDisable = kDefaultAutoDisable;
// Create the eventfd we will use to signal our thread to wake up when
// needed.
mWakeupThreadFD = eventfd(0, EFD_NONBLOCK);
// seed the random number generator (used to generated timeline IDs)
srand48(static_cast<unsigned int>(systemTime()));
}
CommonTimeServer::~CommonTimeServer() {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
shutdownThread();
// No need to grab the lock here. We are in the destructor; if the the user
// has a thread in any of the APIs while the destructor is being called,
// there is a threading problem a the application level we cannot reasonably
// do anything about.
cleanupSocket_l();
if (mWakeupThreadFD >= 0) {
close(mWakeupThreadFD);
mWakeupThreadFD = -1;
}
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool CommonTimeServer::startServices() {
// start the ICommonClock service
mICommonClock = CommonClockService::instantiate(*this);
if (mICommonClock == NULL)
return false;
// start the ICommonTimeConfig service
mICommonTimeConfig = CommonTimeConfigService::instantiate(*this);
if (mICommonTimeConfig == NULL)
return false;
return true;
}
bool CommonTimeServer::threadLoop() {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// Register our service interfaces.
if (!startServices())
return false;
// Hold the lock while we are in the main thread loop. It will release the
// lock when it blocks, and hold the lock at all other times.
mLock.lock();
runStateMachine_l();
mLock.unlock();
IPCThreadState::self()->stopProcess();
return false;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool CommonTimeServer::runStateMachine_l() {
if (!mLocalClock.initCheck())
return false;
if (!mCommonClock.init(mLocalClock.getLocalFreq()))
return false;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// Enter the initial state.
becomeInitial("startup");
// run the state machine
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
while (!exitPending()) {
struct pollfd pfds[2];
int rc;
int eventCnt = 0;
int64_t wakeupTime;
// We are always interested in our wakeup FD.
pfds[eventCnt].fd = mWakeupThreadFD;
pfds[eventCnt].events = POLLIN;
pfds[eventCnt].revents = 0;
eventCnt++;
// If we have a valid socket, then we are interested in what it has to
// say as well.
if (mSocket >= 0) {
pfds[eventCnt].fd = mSocket;
pfds[eventCnt].events = POLLIN;
pfds[eventCnt].revents = 0;
eventCnt++;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// Note, we were holding mLock when this function was called. We
// release it only while we are blocking and hold it at all other times.
mLock.unlock();
rc = poll(pfds, eventCnt, mCurTimeout.msecTillTimeout());
wakeupTime = mLocalClock.getLocalTime();
mLock.lock();
// Is it time to shutdown? If so, don't hesitate... just do it.
if (exitPending())
break;
// Did the poll fail? This should never happen and is fatal if it does.
if (rc < 0) {
LOGE("%s:%d poll failed", __PRETTY_FUNCTION__, __LINE__);
return false;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (rc == 0)
mCurTimeout.setTimeout(kInfiniteTimeout);
// Were we woken up on purpose? If so, clear the eventfd with a read.
if (pfds[0].revents)
clearPendingWakeupEvents_l();
// Is out bind address dirty? If so, clean up our socket (if any).
// Alternatively, do we have an active socket but should be auto
// disabled? If so, release the socket and enter the proper sync state.
bool droppedSocket = false;
if (mBindIfaceDirty || ((mSocket >= 0) && shouldAutoDisable())) {
cleanupSocket_l();
mBindIfaceDirty = false;
droppedSocket = true;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// Do we not have a socket but should have one? If so, try to set one
// up.
if ((mSocket < 0) && mBindIfaceValid && !shouldAutoDisable()) {
if (setupSocket_l()) {
// Success! We are now joining a new network (either coming
// from no network, or coming from a potentially different
// network). Force our priority to be lower so that we defer to
// any other masters which may already be on the network we are
// joining. Later, when we enter either the client or the
// master state, we will clear this flag and go back to our
// normal election priority.
setForceLowPriority(true);
switch (mState) {
// If we were in initial (whether we had a immediately
// before this network or not) we want to simply reset the
// system and start again. Forcing a transition from
// INITIAL to INITIAL should do the job.
case CommonClockService::STATE_INITIAL:
becomeInitial("bound interface");
break;
// If we were in the master state, then either we were the
// master in a no-network situation, or we were the master
// of a different network and have moved to a new interface.
// In either case, immediately send out a master
// announcement at low priority.
case CommonClockService::STATE_MASTER:
sendMasterAnnouncement();
break;
// If we were in any other state (CLIENT, RONIN, or
// WAIT_FOR_ELECTION) then we must be moving from one
// network to another. We have lost our old master;
// transition to RONIN in an attempt to find a new master.
// If there are none out there, we will just assume
// responsibility for the timeline we used to be a client
// of.
default:
becomeRonin("bound interface");
break;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
} else {
// That's odd... we failed to set up our socket. This could be
// due to some transient network change which will work itself
// out shortly; schedule a retry attempt in the near future.
mCurTimeout.setTimeout(kSetupRetryTimeout);
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// One way or the other, we don't have any data to process at this
// point (since we just tried to bulid a new socket). Loop back
// around and wait for the next thing to do.
continue;
} else if (droppedSocket) {
// We just lost our socket, and for whatever reason (either no
// config, or auto disable engaged) we are not supposed to rebuild
// one at this time. We are not going to rebuild our socket until
// something about our config/auto-disabled status changes, so we
// are basically in network-less mode. If we are already in either
// INITIAL or MASTER, just stay there until something changes. If
// we are in any other state (CLIENT, RONIN or WAIT_FOR_ELECTION),
// then transition to either INITIAL or MASTER depending on whether
// or not our timeline is valid.
LOGI("Entering networkless mode interface is %s, "
"shouldAutoDisable = %s",
mBindIfaceValid ? "valid" : "invalid",
shouldAutoDisable() ? "true" : "false");
if ((mState != ICommonClock::STATE_INITIAL) &&
(mState != ICommonClock::STATE_MASTER)) {
if (mTimelineID == ICommonClock::kInvalidTimelineID)
becomeInitial("network-less mode");
else
becomeMaster("network-less mode");
}
continue;
}
// Did we wakeup with no signalled events across all of our FDs? If so,
// we must have hit our timeout.
if (rc == 0) {
if (!handleTimeout())
LOGE("handleTimeout failed");
continue;
}
// Does our socket have data for us (assuming we still have one, we
// may have RXed a packet at the same time as a config change telling us
// to shut our socket down)? If so, process its data.
if ((mSocket >= 0) && (eventCnt > 1) && (pfds[1].revents)) {
mLastPacketRxLocalTime = wakeupTime;
if (!handlePacket())
LOGE("handlePacket failed");
}
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
cleanupSocket_l();
return true;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
void CommonTimeServer::clearPendingWakeupEvents_l() {
int64_t tmp;
read(mWakeupThreadFD, &tmp, sizeof(tmp));
}
void CommonTimeServer::wakeupThread_l() {
int64_t tmp = 1;
write(mWakeupThreadFD, &tmp, sizeof(tmp));
}
void CommonTimeServer::cleanupSocket_l() {
if (mSocket >= 0) {
close(mSocket);
mSocket = -1;
}
}
void CommonTimeServer::shutdownThread() {
// Flag the work thread for shutdown.
this->requestExit();
// Signal the thread in case its sleeping.
mLock.lock();
wakeupThread_l();
mLock.unlock();
// Wait for the thread to exit.
this->join();
}
bool CommonTimeServer::setupSocket_l() {
int rc;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool ret_val = false;
struct sockaddr_in* ipv4_addr = NULL;
char masterElectionEPStr[64];
const int one = 1;
// This should never be needed, but if we happened to have an old socket
// lying around, be sure to not leak it before proceeding.
cleanupSocket_l();
// If we don't have a valid endpoint to bind to, then how did we get here in
// the first place? Regardless, we know that we are going to fail to bind,
// so don't even try.
if (!mBindIfaceValid)
return false;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
sockaddrToString(mMasterElectionEP, true, masterElectionEPStr,
sizeof(masterElectionEPStr));
LOGI("Building socket :: bind = %s master election = %s",
mBindIface.string(), masterElectionEPStr);
// TODO: add proper support for IPv6. Right now, we block IPv6 addresses at
// the configuration interface level.
if (AF_INET != mMasterElectionEP.ss_family) {
LOGW("TODO: add proper IPv6 support");
goto bailout;
}
// open a UDP socket for the timeline serivce
mSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (mSocket < 0) {
LOGE("Failed to create socket (errno = %d)", errno);
goto bailout;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// Bind to the selected interface using Linux's spiffy SO_BINDTODEVICE.
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "%s", mBindIface.string());
ifr.ifr_name[sizeof(ifr.ifr_name) - 1] = 0;
rc = setsockopt(mSocket, SOL_SOCKET, SO_BINDTODEVICE,
(void *)&ifr, sizeof(ifr));
if (rc) {
LOGE("Failed to bind socket at to interface %s (errno = %d)",
ifr.ifr_name, errno);
goto bailout;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// Bind our socket to INADDR_ANY and the master election port. The
// interface binding we made using SO_BINDTODEVICE should limit us to
// traffic only on the interface we are interested in. We need to bind to
// INADDR_ANY and the specific master election port in order to be able to
// receive both unicast traffic and master election multicast traffic with
// just a single socket.
struct sockaddr_in bindAddr;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
ipv4_addr = reinterpret_cast<struct sockaddr_in*>(&mMasterElectionEP);
memcpy(&bindAddr, ipv4_addr, sizeof(bindAddr));
bindAddr.sin_addr.s_addr = INADDR_ANY;
rc = bind(mSocket,
reinterpret_cast<const sockaddr *>(&bindAddr),
sizeof(bindAddr));
if (rc) {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
LOGE("Failed to bind socket to port %hu (errno = %d)",
ntohs(bindAddr.sin_port), errno);
goto bailout;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (0xE0000000 == (ntohl(ipv4_addr->sin_addr.s_addr) & 0xF0000000)) {
// If our master election endpoint is a multicast address, be sure to join
// the multicast group.
struct ip_mreq mreq;
mreq.imr_multiaddr = ipv4_addr->sin_addr;
mreq.imr_interface.s_addr = htonl(INADDR_ANY);
rc = setsockopt(mSocket, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&mreq, sizeof(mreq));
if (rc == -1) {
LOGE("Failed to join multicast group at %s. (errno = %d)",
masterElectionEPStr, errno);
goto bailout;
}
// disable loopback of multicast packets
const int zero = 0;
rc = setsockopt(mSocket, IPPROTO_IP, IP_MULTICAST_LOOP,
&zero, sizeof(zero));
if (rc == -1) {
LOGE("Failed to disable multicast loopback (errno = %d)", errno);
goto bailout;
}
} else
if (ntohl(ipv4_addr->sin_addr.s_addr) != 0xFFFFFFFF) {
// If the master election address is neither broadcast, nor multicast,
// then we are misconfigured. The config API layer should prevent this
// from ever happening.
goto bailout;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// Set the TTL of sent packets to 1. (Time protocol sync should never leave
// the local subnet)
rc = setsockopt(mSocket, IPPROTO_IP, IP_TTL, &one, sizeof(one));
if (rc == -1) {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
LOGE("Failed to set TTL to %d (errno = %d)", one, errno);
goto bailout;
}
// get the device's unique ID
if (!assignDeviceID())
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
goto bailout;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
ret_val = true;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bailout:
if (!ret_val)
cleanupSocket_l();
return ret_val;
}
// generate a unique device ID that can be used for arbitration
bool CommonTimeServer::assignDeviceID() {
if (!mBindIfaceValid)
return false;
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_addr.sa_family = AF_INET;
strlcpy(ifr.ifr_name, mBindIface.string(), IFNAMSIZ);
int rc = ioctl(mSocket, SIOCGIFHWADDR, &ifr);
if (rc) {
LOGE("%s:%d ioctl failed", __PRETTY_FUNCTION__, __LINE__);
return false;
}
if (ifr.ifr_addr.sa_family != ARPHRD_ETHER) {
LOGE("%s:%d got non-Ethernet address", __PRETTY_FUNCTION__, __LINE__);
return false;
}
mDeviceID = 0;
for (int i = 0; i < ETH_ALEN; i++) {
mDeviceID = (mDeviceID << 8) | ifr.ifr_hwaddr.sa_data[i];
}
return true;
}
// generate a new timeline ID
void CommonTimeServer::assignTimelineID() {
do {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mTimelineID = (static_cast<uint64_t>(lrand48()) << 32)
| static_cast<uint64_t>(lrand48());
} while (mTimelineID == ICommonClock::kInvalidTimelineID);
}
// Select a preference between the device IDs of two potential masters.
// Returns true if the first ID wins, or false if the second ID wins.
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool CommonTimeServer::arbitrateMaster(
uint64_t deviceID1, uint8_t devicePrio1,
uint64_t deviceID2, uint8_t devicePrio2) {
return ((devicePrio1 > devicePrio2) ||
((devicePrio1 == devicePrio2) && (deviceID1 > deviceID2)));
}
bool CommonTimeServer::handlePacket() {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
uint8_t buf[256];
struct sockaddr_storage srcAddr;
socklen_t srcAddrLen = sizeof(srcAddr);
ssize_t recvBytes = recvfrom(
mSocket, buf, sizeof(buf), 0,
reinterpret_cast<const sockaddr *>(&srcAddr), &srcAddrLen);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (recvBytes < 0) {
LOGE("%s:%d recvfrom failed", __PRETTY_FUNCTION__, __LINE__);
return false;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
UniversalTimeServicePacket pkt;
recvBytes = pkt.deserializePacket(buf, recvBytes, mSyncGroupID);
if (recvBytes < 0)
return false;
bool result;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
switch (pkt.packetType) {
case TIME_PACKET_WHO_IS_MASTER_REQUEST:
result = handleWhoIsMasterRequest(&pkt.p.who_is_master_request,
srcAddr);
break;
case TIME_PACKET_WHO_IS_MASTER_RESPONSE:
result = handleWhoIsMasterResponse(&pkt.p.who_is_master_response,
srcAddr);
break;
case TIME_PACKET_SYNC_REQUEST:
result = handleSyncRequest(&pkt.p.sync_request, srcAddr);
break;
case TIME_PACKET_SYNC_RESPONSE:
result = handleSyncResponse(&pkt.p.sync_response, srcAddr);
break;
case TIME_PACKET_MASTER_ANNOUNCEMENT:
result = handleMasterAnnouncement(&pkt.p.master_announcement,
srcAddr);
break;
default: {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
LOGD("%s:%d unknown packet type(%d)",
__PRETTY_FUNCTION__, __LINE__, pkt.packetType);
result = false;
} break;
}
return result;
}
bool CommonTimeServer::handleTimeout() {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// If we have no socket, then this must be a timeout to retry socket setup.
if (mSocket < 0)
return true;
switch (mState) {
case ICommonClock::STATE_INITIAL:
return handleTimeoutInitial();
case ICommonClock::STATE_CLIENT:
return handleTimeoutClient();
case ICommonClock::STATE_MASTER:
return handleTimeoutMaster();
case ICommonClock::STATE_RONIN:
return handleTimeoutRonin();
case ICommonClock::STATE_WAIT_FOR_ELECTION:
return handleTimeoutWaitForElection();
}
return false;
}
bool CommonTimeServer::handleTimeoutInitial() {
if (++mInitial_WhoIsMasterRequestTimeouts ==
kInitial_NumWhoIsMasterRetries) {
// none of our attempts to discover a master succeeded, so make
// this device the master
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
return becomeMaster("initial timeout");
} else {
// retry the WhoIsMaster request
return sendWhoIsMasterRequest();
}
}
bool CommonTimeServer::handleTimeoutClient() {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (shouldPanicNotGettingGoodData())
return becomeInitial("timeout panic, no good data");
if (mClient_SyncRequestPending) {
mClient_SyncRequestPending = false;
if (++mClient_SyncRequestTimeouts < kClient_NumSyncRequestRetries) {
// a sync request has timed out, so retry
return sendSyncRequest();
} else {
// The master has failed to respond to a sync request for too many
// times in a row. Assume the master is dead and start electing
// a new master.
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
return becomeRonin("master not responding");
}
} else {
// initiate the next sync request
return sendSyncRequest();
}
}
bool CommonTimeServer::handleTimeoutMaster() {
// send another announcement from the master
return sendMasterAnnouncement();
}
bool CommonTimeServer::handleTimeoutRonin() {
if (++mRonin_WhoIsMasterRequestTimeouts == kRonin_NumWhoIsMasterRetries) {
// no other master is out there, so we won the election
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
return becomeMaster("no better masters detected");
} else {
return sendWhoIsMasterRequest();
}
}
bool CommonTimeServer::handleTimeoutWaitForElection() {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
return becomeRonin("timeout waiting for election conclusion");
}
bool CommonTimeServer::handleWhoIsMasterRequest(
const WhoIsMasterRequestPacket* request,
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
const sockaddr_storage& srcAddr) {
if (mState == ICommonClock::STATE_MASTER) {
// is this request related to this master's timeline?
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (request->timelineID != ICommonClock::kInvalidTimelineID &&
request->timelineID != mTimelineID)
return true;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
WhoIsMasterResponsePacket pkt;
pkt.initHeader(mTimelineID, mSyncGroupID);
pkt.deviceID = mDeviceID;
pkt.devicePriority = effectivePriority();
uint8_t buf[256];
ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
if (bufSz < 0)
return false;
ssize_t sendBytes = sendto(
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mSocket, buf, bufSz, 0,
reinterpret_cast<const sockaddr *>(&srcAddr),
sizeof(srcAddr));
if (sendBytes == -1) {
LOGE("%s:%d sendto failed", __PRETTY_FUNCTION__, __LINE__);
return false;
}
} else if (mState == ICommonClock::STATE_RONIN) {
// if we hear a WhoIsMaster request from another device following
// the same timeline and that device wins arbitration, then we will stop
// trying to elect ourselves master and will instead wait for an
// announcement from the election winner
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (request->timelineID != mTimelineID)
return true;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (arbitrateMaster(request->senderDeviceID,
request->senderDevicePriority,
mDeviceID,
effectivePriority()))
return becomeWaitForElection("would lose election");
return true;
} else if (mState == ICommonClock::STATE_INITIAL) {
// If a group of devices booted simultaneously (e.g. after a power
// outage) and all of them are in the initial state and there is no
// master, then each device may time out and declare itself master at
// the same time. To avoid this, listen for
// WhoIsMaster(InvalidTimeline) requests from peers. If we would lose
// arbitration against that peer, reset our timeout count so that the
// peer has a chance to become master before we time out.
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (request->timelineID == ICommonClock::kInvalidTimelineID &&
arbitrateMaster(request->senderDeviceID,
request->senderDevicePriority,
mDeviceID,
effectivePriority())) {
mInitial_WhoIsMasterRequestTimeouts = 0;
}
}
return true;
}
bool CommonTimeServer::handleWhoIsMasterResponse(
const WhoIsMasterResponsePacket* response,
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
const sockaddr_storage& srcAddr) {
if (mState == ICommonClock::STATE_INITIAL || mState == ICommonClock::STATE_RONIN) {
return becomeClient(srcAddr,
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
response->deviceID,
response->devicePriority,
response->timelineID,
"heard whois response");
} else if (mState == ICommonClock::STATE_CLIENT) {
// if we get multiple responses because there are multiple devices
// who believe that they are master, then follow the master that
// wins arbitration
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (arbitrateMaster(response->deviceID,
response->devicePriority,
mClient_MasterDeviceID,
mClient_MasterDevicePriority)) {
return becomeClient(srcAddr,
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
response->deviceID,
response->devicePriority,
response->timelineID,
"heard whois response");
}
}
return true;
}
bool CommonTimeServer::handleSyncRequest(const SyncRequestPacket* request,
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
const sockaddr_storage& srcAddr) {
SyncResponsePacket pkt;
pkt.initHeader(mTimelineID, mSyncGroupID);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if ((mState == ICommonClock::STATE_MASTER) &&
(mTimelineID == request->timelineID)) {
int64_t rxLocalTime = mLastPacketRxLocalTime;
int64_t rxCommonTime;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// If we are master on an actual network and have actual clients, then
// we are no longer low priority.
setForceLowPriority(false);
if (OK != mCommonClock.localToCommon(rxLocalTime, &rxCommonTime)) {
return false;
}
int64_t txLocalTime = mLocalClock.getLocalTime();;
int64_t txCommonTime;
if (OK != mCommonClock.localToCommon(txLocalTime, &txCommonTime)) {
return false;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
pkt.nak = 0;
pkt.clientTxLocalTime = request->clientTxLocalTime;
pkt.masterRxCommonTime = rxCommonTime;
pkt.masterTxCommonTime = txCommonTime;
} else {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
pkt.nak = 1;
pkt.clientTxLocalTime = 0;
pkt.masterRxCommonTime = 0;
pkt.masterTxCommonTime = 0;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
uint8_t buf[256];
ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
if (bufSz < 0)
return false;
ssize_t sendBytes = sendto(
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mSocket, &buf, bufSz, 0,
reinterpret_cast<const sockaddr *>(&srcAddr),
sizeof(srcAddr));
if (sendBytes == -1) {
LOGE("%s:%d sendto failed", __PRETTY_FUNCTION__, __LINE__);
return false;
}
return true;
}
bool CommonTimeServer::handleSyncResponse(
const SyncResponsePacket* response,
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
const sockaddr_storage& srcAddr) {
if (mState != ICommonClock::STATE_CLIENT)
return true;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
assert(mMasterEPValid);
if (!sockaddrMatch(srcAddr, mMasterEP, true)) {
char srcEP[64], expectedEP[64];
sockaddrToString(srcAddr, true, srcEP, sizeof(srcEP));
sockaddrToString(mMasterEP, true, expectedEP, sizeof(expectedEP));
LOGI("Dropping sync response from unexpected address."
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
" Expected %s Got %s", expectedEP, srcEP);
return true;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (response->nak) {
// if our master is no longer accepting requests, then we need to find
// a new master
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
return becomeRonin("master NAK'ed");
}
mClient_SyncRequestPending = 0;
mClient_SyncRequestTimeouts = 0;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mClient_PacketRTTLog.logRX(response->clientTxLocalTime,
mLastPacketRxLocalTime);
bool result;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (!(mClient_SyncRespsRXedFromCurMaster++)) {
// the first request/response exchange between a client and a master
// may take unusually long due to ARP, so discard it.
result = true;
} else {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
int64_t clientTxLocalTime = response->clientTxLocalTime;
int64_t clientRxLocalTime = mLastPacketRxLocalTime;
int64_t masterTxCommonTime = response->masterTxCommonTime;
int64_t masterRxCommonTime = response->masterRxCommonTime;
int64_t rtt = (clientRxLocalTime - clientTxLocalTime);
int64_t avgLocal = (clientTxLocalTime + clientRxLocalTime) >> 1;
int64_t avgCommon = (masterTxCommonTime + masterRxCommonTime) >> 1;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// if the RTT of the packet is significantly larger than the panic
// threshold, we should simply discard it. Its better to do nothing
// than to take cues from a packet like that.
int rttCommon = mCommonClock.localDurationToCommonDuration(rtt);
if (rttCommon > (static_cast<int64_t>(mPanicThresholdUsec) * 5)) {
LOGV("Dropping sync response with RTT of %lld uSec", rttCommon);
mClient_ExpiredSyncRespsRXedFromCurMaster++;
if (shouldPanicNotGettingGoodData())
return becomeInitial("RX panic, no good data");
} else {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
result = mClockRecovery.pushDisciplineEvent(avgLocal, avgCommon, rtt);
mClient_LastGoodSyncRX = clientRxLocalTime;
if (result) {
// indicate to listeners that we've synced to the common timeline
notifyClockSync();
} else {
LOGE("Panic! Observed clock sync error is too high to tolerate,"
" resetting state machine and starting over.");
notifyClockSyncLoss();
return becomeInitial("panic");
}
}
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mCurTimeout.setTimeout(mSyncRequestIntervalMs);
return result;
}
bool CommonTimeServer::handleMasterAnnouncement(
const MasterAnnouncementPacket* packet,
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
const sockaddr_storage& srcAddr) {
uint64_t newDeviceID = packet->deviceID;
uint8_t newDevicePrio = packet->devicePriority;
uint64_t newTimelineID = packet->timelineID;
if (mState == ICommonClock::STATE_INITIAL ||
mState == ICommonClock::STATE_RONIN ||
mState == ICommonClock::STATE_WAIT_FOR_ELECTION) {
// if we aren't currently following a master, then start following
// this new master
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
return becomeClient(srcAddr,
newDeviceID,
newDevicePrio,
newTimelineID,
"heard master announcement");
} else if (mState == ICommonClock::STATE_CLIENT) {
// if the new master wins arbitration against our current master,
// then become a client of the new master
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (arbitrateMaster(newDeviceID,
newDevicePrio,
mClient_MasterDeviceID,
mClient_MasterDevicePriority))
return becomeClient(srcAddr,
newDeviceID,
newDevicePrio,
newTimelineID,
"heard master announcement");
} else if (mState == ICommonClock::STATE_MASTER) {
// two masters are competing - if the new one wins arbitration, then
// cease acting as master
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (arbitrateMaster(newDeviceID, newDevicePrio,
mDeviceID, effectivePriority()))
return becomeClient(srcAddr, newDeviceID,
newDevicePrio, newTimelineID,
"heard master announcement");
}
return true;
}
bool CommonTimeServer::sendWhoIsMasterRequest() {
assert(mState == ICommonClock::STATE_INITIAL || mState == ICommonClock::STATE_RONIN);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// If we have no socket, then we must be in the unconfigured initial state.
// Don't report any errors, just don't try to send the initial who-is-master
// query. Eventually, our network will either become configured, or we will
// be forced into network-less master mode by higher level code.
if (mSocket < 0) {
assert(mState == ICommonClock::STATE_INITIAL);
return true;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool ret = false;
WhoIsMasterRequestPacket pkt;
pkt.initHeader(mSyncGroupID);
pkt.senderDeviceID = mDeviceID;
pkt.senderDevicePriority = effectivePriority();
uint8_t buf[256];
ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
if (bufSz >= 0) {
ssize_t sendBytes = sendto(
mSocket, buf, bufSz, 0,
reinterpret_cast<const sockaddr *>(&mMasterElectionEP),
sizeof(mMasterElectionEP));
if (sendBytes < 0)
LOGE("WhoIsMaster sendto failed (errno %d)", errno);
ret = true;
}
if (mState == ICommonClock::STATE_INITIAL) {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mCurTimeout.setTimeout(kInitial_WhoIsMasterTimeoutMs);
} else {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mCurTimeout.setTimeout(kRonin_WhoIsMasterTimeoutMs);
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
return ret;
}
bool CommonTimeServer::sendSyncRequest() {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// If we are sending sync requests, then we must be in the client state and
// we must have a socket (when we have no network, we are only supposed to
// be in INITIAL or MASTER)
assert(mState == ICommonClock::STATE_CLIENT);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
assert(mSocket >= 0);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool ret = false;
SyncRequestPacket pkt;
pkt.initHeader(mTimelineID, mSyncGroupID);
pkt.clientTxLocalTime = mLocalClock.getLocalTime();
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (!mClient_FirstSyncTX)
mClient_FirstSyncTX = pkt.clientTxLocalTime;
mClient_PacketRTTLog.logTX(pkt.clientTxLocalTime);
uint8_t buf[256];
ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
if (bufSz >= 0) {
ssize_t sendBytes = sendto(
mSocket, buf, bufSz, 0,
reinterpret_cast<const sockaddr *>(&mMasterEP),
sizeof(mMasterEP));
if (sendBytes < 0)
LOGE("SyncRequest sendto failed (errno %d)", errno);
ret = true;
}
mClient_SyncsSentToCurMaster++;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mCurTimeout.setTimeout(mSyncRequestIntervalMs);
mClient_SyncRequestPending = true;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
return ret;
}
bool CommonTimeServer::sendMasterAnnouncement() {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool ret = false;
assert(mState == ICommonClock::STATE_MASTER);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
// If we are being asked to send a master announcement, but we have no
// socket, we must be in network-less master mode. Don't bother to send the
// announcement, and don't bother to schedule a timeout. When the network
// comes up, the work thread will get poked and start the process of
// figuring out who the current master should be.
if (mSocket < 0) {
mCurTimeout.setTimeout(kInfiniteTimeout);
return true;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
MasterAnnouncementPacket pkt;
pkt.initHeader(mTimelineID, mSyncGroupID);
pkt.deviceID = mDeviceID;
pkt.devicePriority = effectivePriority();
uint8_t buf[256];
ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
if (bufSz >= 0) {
ssize_t sendBytes = sendto(
mSocket, buf, bufSz, 0,
reinterpret_cast<const sockaddr *>(&mMasterElectionEP),
sizeof(mMasterElectionEP));
if (sendBytes < 0)
LOGE("MasterAnnouncement sendto failed (errno %d)", errno);
ret = true;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mCurTimeout.setTimeout(mMasterAnnounceIntervalMs);
return ret;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool CommonTimeServer::becomeClient(const sockaddr_storage& masterEP,
uint64_t masterDeviceID,
uint8_t masterDevicePriority,
uint64_t timelineID,
const char* cause) {
char newEPStr[64], oldEPStr[64];
sockaddrToString(masterEP, true, newEPStr, sizeof(newEPStr));
sockaddrToString(mMasterEP, mMasterEPValid, oldEPStr, sizeof(oldEPStr));
LOGI("%s --> CLIENT (%s) :%s"
" OldMaster: %02x-%014llx::%016llx::%s"
" NewMaster: %02x-%014llx::%016llx::%s",
stateToString(mState), cause,
(mTimelineID != timelineID) ? " (new timeline)" : "",
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mClient_MasterDevicePriority, mClient_MasterDeviceID,
mTimelineID, oldEPStr,
masterDevicePriority, masterDeviceID,
timelineID, newEPStr);
if (mTimelineID != timelineID) {
// start following a new timeline
mTimelineID = timelineID;
mClockRecovery.reset(true, true);
notifyClockSyncLoss();
} else {
// start following a new master on the existing timeline
mClockRecovery.reset(false, true);
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mMasterEP = masterEP;
mMasterEPValid = true;
setForceLowPriority(false);
mClient_MasterDeviceID = masterDeviceID;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mClient_MasterDevicePriority = masterDevicePriority;
resetSyncStats();
setState(ICommonClock::STATE_CLIENT);
// add some jitter to when the various clients send their requests
// in order to reduce the likelihood that a group of clients overload
// the master after receiving a master announcement
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
usleep((lrand48() % 100) * 1000);
return sendSyncRequest();
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool CommonTimeServer::becomeMaster(const char* cause) {
uint64_t oldTimelineID = mTimelineID;
if (mTimelineID == ICommonClock::kInvalidTimelineID) {
// this device has not been following any existing timeline,
// so it will create a new timeline and declare itself master
assert(!mCommonClock.isValid());
// set the common time basis
mCommonClock.setBasis(mLocalClock.getLocalTime(), 0);
// assign an arbitrary timeline iD
assignTimelineID();
// notify listeners that we've created a common timeline
notifyClockSync();
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
LOGI("%s --> MASTER (%s) : %s timeline %016llx",
stateToString(mState), cause,
(oldTimelineID == mTimelineID) ? "taking ownership of"
: "creating new",
mTimelineID);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
memset(&mMasterEP, 0, sizeof(mMasterEP));
mMasterEPValid = false;
setForceLowPriority(false);
mClient_MasterDevicePriority = effectivePriority();
mClient_MasterDeviceID = mDeviceID;
mClockRecovery.reset(false, true);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
resetSyncStats();
setState(ICommonClock::STATE_MASTER);
return sendMasterAnnouncement();
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool CommonTimeServer::becomeRonin(const char* cause) {
// If we were the client of a given timeline, but had never received even a
// single time sync packet, then we transition back to Initial instead of
// Ronin. If we transition to Ronin and end up becoming the new Master, we
// will be unable to service requests for other clients because we never
// actually knew what time it was. By going to initial, we ensure that
// other clients who know what time it is, but would lose master arbitration
// in the Ronin case, will step up and become the proper new master of the
// old timeline.
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
char oldEPStr[64];
sockaddrToString(mMasterEP, mMasterEPValid, oldEPStr, sizeof(oldEPStr));
memset(&mMasterEP, 0, sizeof(mMasterEP));
mMasterEPValid = false;
if (mCommonClock.isValid()) {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
LOGI("%s --> RONIN (%s) : lost track of previously valid timeline "
"%02x-%014llx::%016llx::%s (%d TXed %d RXed %d RXExpired)",
stateToString(mState), cause,
mClient_MasterDevicePriority, mClient_MasterDeviceID,
mTimelineID, oldEPStr,
mClient_SyncsSentToCurMaster,
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mClient_SyncRespsRXedFromCurMaster,
mClient_ExpiredSyncRespsRXedFromCurMaster);
mRonin_WhoIsMasterRequestTimeouts = 0;
setState(ICommonClock::STATE_RONIN);
return sendWhoIsMasterRequest();
} else {
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
LOGI("%s --> INITIAL (%s) : never synced timeline "
"%02x-%014llx::%016llx::%s (%d TXed %d RXed %d RXExpired)",
stateToString(mState), cause,
mClient_MasterDevicePriority, mClient_MasterDeviceID,
mTimelineID, oldEPStr,
mClient_SyncsSentToCurMaster,
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mClient_SyncRespsRXedFromCurMaster,
mClient_ExpiredSyncRespsRXedFromCurMaster);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
return becomeInitial("ronin, no timeline");
}
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool CommonTimeServer::becomeWaitForElection(const char* cause) {
LOGI("%s --> WAIT_FOR_ELECTION (%s) : dropping out of election,"
" waiting %d mSec for completion.",
stateToString(mState), cause, kWaitForElection_TimeoutMs);
setState(ICommonClock::STATE_WAIT_FOR_ELECTION);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mCurTimeout.setTimeout(kWaitForElection_TimeoutMs);
return true;
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool CommonTimeServer::becomeInitial(const char* cause) {
LOGI("Entering INITIAL (%s), total reset.", cause);
setState(ICommonClock::STATE_INITIAL);
// reset clock recovery
mClockRecovery.reset(true, true);
// reset internal state bookkeeping.
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mCurTimeout.setTimeout(kInfiniteTimeout);
memset(&mMasterEP, 0, sizeof(mMasterEP));
mMasterEPValid = false;
mLastPacketRxLocalTime = 0;
mTimelineID = ICommonClock::kInvalidTimelineID;
mClockSynced = false;
mInitial_WhoIsMasterRequestTimeouts = 0;
mClient_MasterDeviceID = 0;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
mClient_MasterDevicePriority = 0;
mRonin_WhoIsMasterRequestTimeouts = 0;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
resetSyncStats();
// send the first request to discover the master
return sendWhoIsMasterRequest();
}
void CommonTimeServer::notifyClockSync() {
if (!mClockSynced) {
mClockSynced = true;
mICommonClock->notifyOnTimelineChanged(mTimelineID);
}
}
void CommonTimeServer::notifyClockSyncLoss() {
if (mClockSynced) {
mClockSynced = false;
mICommonClock->notifyOnTimelineChanged(
ICommonClock::kInvalidTimelineID);
}
}
void CommonTimeServer::setState(ICommonClock::State s) {
mState = s;
}
const char* CommonTimeServer::stateToString(ICommonClock::State s) {
switch(s) {
case ICommonClock::STATE_INITIAL:
return "INITIAL";
case ICommonClock::STATE_CLIENT:
return "CLIENT";
case ICommonClock::STATE_MASTER:
return "MASTER";
case ICommonClock::STATE_RONIN:
return "RONIN";
case ICommonClock::STATE_WAIT_FOR_ELECTION:
return "WAIT_FOR_ELECTION";
default:
return "unknown";
}
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
void CommonTimeServer::sockaddrToString(const sockaddr_storage& addr,
bool addrValid,
char* buf, size_t bufLen) {
if (!bufLen || !buf)
return;
if (addrValid) {
switch (addr.ss_family) {
case AF_INET: {
const struct sockaddr_in* sa =
reinterpret_cast<const struct sockaddr_in*>(&addr);
unsigned long a = ntohl(sa->sin_addr.s_addr);
uint16_t p = ntohs(sa->sin_port);
snprintf(buf, bufLen, "%lu.%lu.%lu.%lu:%hu",
((a >> 24) & 0xFF), ((a >> 16) & 0xFF),
((a >> 8) & 0xFF), (a & 0xFF), p);
} break;
case AF_INET6: {
const struct sockaddr_in6* sa =
reinterpret_cast<const struct sockaddr_in6*>(&addr);
const uint8_t* a = sa->sin6_addr.s6_addr;
uint16_t p = ntohs(sa->sin6_port);
snprintf(buf, bufLen,
"%02X%02X:%02X%02X:%02X%02X:%02X%02X:"
"%02X%02X:%02X%02X:%02X%02X:%02X%02X port %hd",
a[0], a[1], a[ 2], a[ 3], a[ 4], a[ 5], a[ 6], a[ 7],
a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15],
p);
} break;
default:
snprintf(buf, bufLen,
"<unknown sockaddr family %d>", addr.ss_family);
break;
}
} else {
snprintf(buf, bufLen, "<none>");
}
buf[bufLen - 1] = 0;
}
bool CommonTimeServer::sockaddrMatch(const sockaddr_storage& a1,
const sockaddr_storage& a2,
bool matchAddressOnly) {
if (a1.ss_family != a2.ss_family)
return false;
switch (a1.ss_family) {
case AF_INET: {
const struct sockaddr_in* sa1 =
reinterpret_cast<const struct sockaddr_in*>(&a1);
const struct sockaddr_in* sa2 =
reinterpret_cast<const struct sockaddr_in*>(&a2);
if (sa1->sin_addr.s_addr != sa2->sin_addr.s_addr)
return false;
return (matchAddressOnly || (sa1->sin_port == sa2->sin_port));
} break;
case AF_INET6: {
const struct sockaddr_in6* sa1 =
reinterpret_cast<const struct sockaddr_in6*>(&a1);
const struct sockaddr_in6* sa2 =
reinterpret_cast<const struct sockaddr_in6*>(&a2);
if (memcmp(&sa1->sin6_addr, &sa2->sin6_addr, sizeof(sa2->sin6_addr)))
return false;
return (matchAddressOnly || (sa1->sin6_port == sa2->sin6_port));
} break;
// Huh? We don't deal in non-IPv[46] addresses. Not sure how we got
// here, but we don't know how to comapre these addresses and simply
// default to a no-match decision.
default: return false;
}
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
void CommonTimeServer::TimeoutHelper::setTimeout(int msec) {
mTimeoutValid = (msec >= 0);
if (mTimeoutValid)
mEndTime = systemTime() +
(static_cast<nsecs_t>(msec) * 1000000);
}
int CommonTimeServer::TimeoutHelper::msecTillTimeout() {
if (!mTimeoutValid)
return kInfiniteTimeout;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
nsecs_t now = systemTime();
if (now >= mEndTime)
return 0;
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
uint64_t deltaMsec = (((mEndTime - now) + 999999) / 1000000);
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
if (deltaMsec > static_cast<uint64_t>(std::numeric_limits<int>::max()))
return std::numeric_limits<int>::max();
return static_cast<int>(deltaMsec);
}
Implement new common_time service functionality. Major re-factor of the common_time (formally aah_timesrv) service in preparation for up-integration into Android master. This work includes bug fixes, new features, and general code cleanup. High points are listed below. + CommonClock interface has been enhanced to allow querying of many more low level synchronization details; mostly for debugging, but in theory useful to an application as well. + CommonTimeConfig interface has been implemented. This allows a management process to configure a number of different parameters (many of them new) to control the behavior of the common_time service. Most importantly, the time service can be bound to a specific network interface and should only operate on that interface an no others. + Enhance log messages to be more useful in determining what the time service state machine is doing and why. + Enhance information provided by dumpsys to provide many more details about the quality of time sync and the network conditions which gave rise to the current quality conditions. Features, features, features.... + Add a feature which lets the high level choose a different master election endpoint so that multiple time synchronization domains can co-exist on the same subnet (mostly to support a potential use case of multiple home domains in a multiple dwelling environment like a hotel, dormitory or apartment complex). + Add a feature which lets the high level assign a 64-bit group ID which allows partitioning of time synchronization domains even when the master election endpoint is shared (as it might be if broadcast is being used instead of multicast) + Add an auto-disable feature which lets the time service drop into network-less mode when there are no active clients of the common_time service in the device. Mostly for phones, this allows phones to not consume network/battery resources when they don't need to maintain common time. + Add a feature which lets the high level choose the priority of the common_time service in the master election protocol. This allows high level decisions about things like mobile vs non-mobile, wired ethernet vs WiFi to affect who ends up with the job of master on a given network. Priority overrides at the low level also allow clients coming in from network-less mode to lower their effective priority as they join a new network so as to not disrupt any stable long-running timeline which may already be active on the network. + Add the ability to control some of the core parameters of the time sync service which effect network load (like the sync polling interval and the master announce interval) Change-Id: I71af15a83cfa5ef0417b406928967fb9e02f55c6
2012-01-20 12:12:59 -08:00
bool CommonTimeServer::shouldPanicNotGettingGoodData() {
if (mClient_FirstSyncTX) {
int64_t now = mLocalClock.getLocalTime();
int64_t delta = now - (mClient_LastGoodSyncRX
? mClient_LastGoodSyncRX
: mClient_FirstSyncTX);
int64_t deltaUsec = mCommonClock.localDurationToCommonDuration(delta);
if (deltaUsec >= kNoGoodDataPanicThreshold)
return true;
}
return false;
}
void CommonTimeServer::PacketRTTLog::logTX(int64_t txTime) {
txTimes[wrPtr] = txTime;
rxTimes[wrPtr] = 0;
wrPtr = (wrPtr + 1) % RTT_LOG_SIZE;
if (!wrPtr)
logFull = true;
}
void CommonTimeServer::PacketRTTLog::logRX(int64_t txTime, int64_t rxTime) {
if (!logFull && !wrPtr)
return;
uint32_t i = logFull ? wrPtr : 0;
do {
if (txTimes[i] == txTime) {
rxTimes[i] = rxTime;
break;
}
i = (i + 1) % RTT_LOG_SIZE;
} while (i != wrPtr);
}
} // namespace android