432 lines
11 KiB
C++
432 lines
11 KiB
C++
|
/*
|
||
|
* Copyright (C) 2011 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
|
||
|
#include <utils/Log.h>
|
||
|
|
||
|
#include "Fusion.h"
|
||
|
|
||
|
namespace android {
|
||
|
|
||
|
// -----------------------------------------------------------------------
|
||
|
|
||
|
template <typename TYPE>
|
||
|
static inline TYPE sqr(TYPE x) {
|
||
|
return x*x;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline T clamp(T v) {
|
||
|
return v < 0 ? 0 : v;
|
||
|
}
|
||
|
|
||
|
template <typename TYPE, size_t C, size_t R>
|
||
|
static mat<TYPE, R, R> scaleCovariance(
|
||
|
const mat<TYPE, C, R>& A,
|
||
|
const mat<TYPE, C, C>& P) {
|
||
|
// A*P*transpose(A);
|
||
|
mat<TYPE, R, R> APAt;
|
||
|
for (size_t r=0 ; r<R ; r++) {
|
||
|
for (size_t j=r ; j<R ; j++) {
|
||
|
double apat(0);
|
||
|
for (size_t c=0 ; c<C ; c++) {
|
||
|
double v(A[c][r]*P[c][c]*0.5);
|
||
|
for (size_t k=c+1 ; k<C ; k++)
|
||
|
v += A[k][r] * P[c][k];
|
||
|
apat += 2 * v * A[c][j];
|
||
|
}
|
||
|
APAt[j][r] = apat;
|
||
|
APAt[r][j] = apat;
|
||
|
}
|
||
|
}
|
||
|
return APAt;
|
||
|
}
|
||
|
|
||
|
template <typename TYPE, typename OTHER_TYPE>
|
||
|
static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
|
||
|
mat<TYPE, 3, 3> r;
|
||
|
r[0][0] = diag;
|
||
|
r[1][1] = diag;
|
||
|
r[2][2] = diag;
|
||
|
r[0][1] = p.z;
|
||
|
r[1][0] =-p.z;
|
||
|
r[0][2] =-p.y;
|
||
|
r[2][0] = p.y;
|
||
|
r[1][2] = p.x;
|
||
|
r[2][1] =-p.x;
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
template <typename TYPE>
|
||
|
static mat<TYPE, 3, 3> MRPsToMatrix(const vec<TYPE, 3>& p) {
|
||
|
mat<TYPE, 3, 3> res(1);
|
||
|
const mat<TYPE, 3, 3> px(crossMatrix(p, 0));
|
||
|
const TYPE ptp(dot_product(p,p));
|
||
|
const TYPE t = 4/sqr(1+ptp);
|
||
|
res -= t * (1-ptp) * px;
|
||
|
res += t * 2 * sqr(px);
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
template <typename TYPE>
|
||
|
vec<TYPE, 3> matrixToMRPs(const mat<TYPE, 3, 3>& R) {
|
||
|
// matrix to MRPs
|
||
|
vec<TYPE, 3> q;
|
||
|
const float Hx = R[0].x;
|
||
|
const float My = R[1].y;
|
||
|
const float Az = R[2].z;
|
||
|
const float w = 1 / (1 + sqrtf( clamp( Hx + My + Az + 1) * 0.25f ));
|
||
|
q.x = sqrtf( clamp( Hx - My - Az + 1) * 0.25f ) * w;
|
||
|
q.y = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f ) * w;
|
||
|
q.z = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f ) * w;
|
||
|
q.x = copysignf(q.x, R[2].y - R[1].z);
|
||
|
q.y = copysignf(q.y, R[0].z - R[2].x);
|
||
|
q.z = copysignf(q.z, R[1].x - R[0].y);
|
||
|
return q;
|
||
|
}
|
||
|
|
||
|
template<typename TYPE, size_t SIZE>
|
||
|
class Covariance {
|
||
|
mat<TYPE, SIZE, SIZE> mSumXX;
|
||
|
vec<TYPE, SIZE> mSumX;
|
||
|
size_t mN;
|
||
|
public:
|
||
|
Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
|
||
|
void update(const vec<TYPE, SIZE>& x) {
|
||
|
mSumXX += x*transpose(x);
|
||
|
mSumX += x;
|
||
|
mN++;
|
||
|
}
|
||
|
mat<TYPE, SIZE, SIZE> operator()() const {
|
||
|
const float N = 1.0f / mN;
|
||
|
return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
|
||
|
}
|
||
|
void reset() {
|
||
|
mN = 0;
|
||
|
mSumXX = 0;
|
||
|
mSumX = 0;
|
||
|
}
|
||
|
size_t getCount() const {
|
||
|
return mN;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// -----------------------------------------------------------------------
|
||
|
|
||
|
Fusion::Fusion() {
|
||
|
// process noise covariance matrix
|
||
|
const float w1 = gyroSTDEV;
|
||
|
const float w2 = biasSTDEV;
|
||
|
Q[0] = w1*w1;
|
||
|
Q[1] = w2*w2;
|
||
|
|
||
|
Ba.x = 0;
|
||
|
Ba.y = 0;
|
||
|
Ba.z = 1;
|
||
|
|
||
|
Bm.x = 0;
|
||
|
Bm.y = 1;
|
||
|
Bm.z = 0;
|
||
|
|
||
|
init();
|
||
|
}
|
||
|
|
||
|
void Fusion::init() {
|
||
|
// initial estimate: E{ x(t0) }
|
||
|
x = 0;
|
||
|
|
||
|
// initial covariance: Var{ x(t0) }
|
||
|
P = 0;
|
||
|
|
||
|
mInitState = 0;
|
||
|
mCount[0] = 0;
|
||
|
mCount[1] = 0;
|
||
|
mCount[2] = 0;
|
||
|
mData = 0;
|
||
|
}
|
||
|
|
||
|
bool Fusion::hasEstimate() const {
|
||
|
return (mInitState == (MAG|ACC|GYRO));
|
||
|
}
|
||
|
|
||
|
bool Fusion::checkInitComplete(int what, const vec3_t& d) {
|
||
|
if (mInitState == (MAG|ACC|GYRO))
|
||
|
return true;
|
||
|
|
||
|
if (what == ACC) {
|
||
|
mData[0] += d * (1/length(d));
|
||
|
mCount[0]++;
|
||
|
mInitState |= ACC;
|
||
|
} else if (what == MAG) {
|
||
|
mData[1] += d * (1/length(d));
|
||
|
mCount[1]++;
|
||
|
mInitState |= MAG;
|
||
|
} else if (what == GYRO) {
|
||
|
mData[2] += d;
|
||
|
mCount[2]++;
|
||
|
if (mCount[2] == 64) {
|
||
|
// 64 samples is good enough to estimate the gyro drift and
|
||
|
// doesn't take too much time.
|
||
|
mInitState |= GYRO;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (mInitState == (MAG|ACC|GYRO)) {
|
||
|
// Average all the values we collected so far
|
||
|
mData[0] *= 1.0f/mCount[0];
|
||
|
mData[1] *= 1.0f/mCount[1];
|
||
|
mData[2] *= 1.0f/mCount[2];
|
||
|
|
||
|
// calculate the MRPs from the data collection, this gives us
|
||
|
// a rough estimate of our initial state
|
||
|
mat33_t R;
|
||
|
vec3_t up(mData[0]);
|
||
|
vec3_t east(cross_product(mData[1], up));
|
||
|
east *= 1/length(east);
|
||
|
vec3_t north(cross_product(up, east));
|
||
|
R << east << north << up;
|
||
|
x[0] = matrixToMRPs(R);
|
||
|
|
||
|
// NOTE: we could try to use the average of the gyro data
|
||
|
// to estimate the initial bias, but this only works if
|
||
|
// the device is not moving. For now, we don't use that value
|
||
|
// and start with a bias of 0.
|
||
|
x[1] = 0;
|
||
|
|
||
|
// initial covariance
|
||
|
P = 0;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void Fusion::handleGyro(const vec3_t& w, float dT) {
|
||
|
const vec3_t wdT(w * dT); // rad/s * s -> rad
|
||
|
if (!checkInitComplete(GYRO, wdT))
|
||
|
return;
|
||
|
|
||
|
predict(wdT);
|
||
|
}
|
||
|
|
||
|
status_t Fusion::handleAcc(const vec3_t& a) {
|
||
|
if (length(a) < 0.981f)
|
||
|
return BAD_VALUE;
|
||
|
|
||
|
if (!checkInitComplete(ACC, a))
|
||
|
return BAD_VALUE;
|
||
|
|
||
|
// ignore acceleration data if we're close to free-fall
|
||
|
const float l = 1/length(a);
|
||
|
update(a*l, Ba, accSTDEV*l);
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
|
||
|
status_t Fusion::handleMag(const vec3_t& m) {
|
||
|
// the geomagnetic-field should be between 30uT and 60uT
|
||
|
// reject obviously wrong magnetic-fields
|
||
|
if (length(m) > 100)
|
||
|
return BAD_VALUE;
|
||
|
|
||
|
if (!checkInitComplete(MAG, m))
|
||
|
return BAD_VALUE;
|
||
|
|
||
|
const vec3_t up( getRotationMatrix() * Ba );
|
||
|
const vec3_t east( cross_product(m, up) );
|
||
|
vec3_t north( cross_product(up, east) );
|
||
|
|
||
|
const float l = 1 / length(north);
|
||
|
north *= l;
|
||
|
|
||
|
#if 0
|
||
|
// in practice the magnetic-field sensor is so wrong
|
||
|
// that there is no point trying to use it to constantly
|
||
|
// correct the gyro. instead, we use the mag-sensor only when
|
||
|
// the device points north (just to give us a reference).
|
||
|
// We're hoping that it'll actually point north, if it doesn't
|
||
|
// we'll be offset, but at least the instantaneous posture
|
||
|
// of the device will be correct.
|
||
|
|
||
|
const float cos_30 = 0.8660254f;
|
||
|
if (dot_product(north, Bm) < cos_30)
|
||
|
return BAD_VALUE;
|
||
|
#endif
|
||
|
|
||
|
update(north, Bm, magSTDEV*l);
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
|
||
|
bool Fusion::checkState(const vec3_t& v) {
|
||
|
if (isnanf(length(v))) {
|
||
|
LOGW("9-axis fusion diverged. reseting state.");
|
||
|
P = 0;
|
||
|
x[1] = 0;
|
||
|
mInitState = 0;
|
||
|
mCount[0] = 0;
|
||
|
mCount[1] = 0;
|
||
|
mCount[2] = 0;
|
||
|
mData = 0;
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
vec3_t Fusion::getAttitude() const {
|
||
|
return x[0];
|
||
|
}
|
||
|
|
||
|
vec3_t Fusion::getBias() const {
|
||
|
return x[1];
|
||
|
}
|
||
|
|
||
|
mat33_t Fusion::getRotationMatrix() const {
|
||
|
return MRPsToMatrix(x[0]);
|
||
|
}
|
||
|
|
||
|
mat33_t Fusion::getF(const vec3_t& p) {
|
||
|
const float p0 = p.x;
|
||
|
const float p1 = p.y;
|
||
|
const float p2 = p.z;
|
||
|
|
||
|
// f(p, w)
|
||
|
const float p0p1 = p0*p1;
|
||
|
const float p0p2 = p0*p2;
|
||
|
const float p1p2 = p1*p2;
|
||
|
const float p0p0 = p0*p0;
|
||
|
const float p1p1 = p1*p1;
|
||
|
const float p2p2 = p2*p2;
|
||
|
const float pp = 0.5f * (1 - (p0p0 + p1p1 + p2p2));
|
||
|
|
||
|
mat33_t F;
|
||
|
F[0][0] = 0.5f*(p0p0 + pp);
|
||
|
F[0][1] = 0.5f*(p0p1 + p2);
|
||
|
F[0][2] = 0.5f*(p0p2 - p1);
|
||
|
F[1][0] = 0.5f*(p0p1 - p2);
|
||
|
F[1][1] = 0.5f*(p1p1 + pp);
|
||
|
F[1][2] = 0.5f*(p1p2 + p0);
|
||
|
F[2][0] = 0.5f*(p0p2 + p1);
|
||
|
F[2][1] = 0.5f*(p1p2 - p0);
|
||
|
F[2][2] = 0.5f*(p2p2 + pp);
|
||
|
return F;
|
||
|
}
|
||
|
|
||
|
mat33_t Fusion::getdFdp(const vec3_t& p, const vec3_t& we) {
|
||
|
|
||
|
// dF = | A = df/dp -F |
|
||
|
// | 0 0 |
|
||
|
|
||
|
mat33_t A;
|
||
|
A[0][0] = A[1][1] = A[2][2] = 0.5f * (p.x*we.x + p.y*we.y + p.z*we.z);
|
||
|
A[0][1] = 0.5f * (p.y*we.x - p.x*we.y - we.z);
|
||
|
A[0][2] = 0.5f * (p.z*we.x - p.x*we.z + we.y);
|
||
|
A[1][2] = 0.5f * (p.z*we.y - p.y*we.z - we.x);
|
||
|
A[1][0] = -A[0][1];
|
||
|
A[2][0] = -A[0][2];
|
||
|
A[2][1] = -A[1][2];
|
||
|
return A;
|
||
|
}
|
||
|
|
||
|
void Fusion::predict(const vec3_t& w) {
|
||
|
// f(p, w)
|
||
|
vec3_t& p(x[0]);
|
||
|
|
||
|
// There is a discontinuity at 2.pi, to avoid it we need to switch to
|
||
|
// the shadow of p when pT.p gets too big.
|
||
|
const float ptp(dot_product(p,p));
|
||
|
if (ptp >= 2.0f) {
|
||
|
p = -p * (1/ptp);
|
||
|
}
|
||
|
|
||
|
const mat33_t F(getF(p));
|
||
|
|
||
|
// compute w with the bias correction:
|
||
|
// w_estimated = w - b_estimated
|
||
|
const vec3_t& b(x[1]);
|
||
|
const vec3_t we(w - b);
|
||
|
|
||
|
// prediction
|
||
|
const vec3_t dX(F*we);
|
||
|
|
||
|
if (!checkState(dX))
|
||
|
return;
|
||
|
|
||
|
p += dX;
|
||
|
|
||
|
const mat33_t A(getdFdp(p, we));
|
||
|
|
||
|
// G = | G0 0 | = | -F 0 |
|
||
|
// | 0 1 | | 0 1 |
|
||
|
|
||
|
// P += A*P + P*At + F*Q*Ft
|
||
|
const mat33_t AP(A*transpose(P[0][0]));
|
||
|
const mat33_t PAt(P[0][0]*transpose(A));
|
||
|
const mat33_t FPSt(F*transpose(P[1][0]));
|
||
|
const mat33_t PSFt(P[1][0]*transpose(F));
|
||
|
const mat33_t FQFt(scaleCovariance(F, Q[0]));
|
||
|
P[0][0] += AP + PAt - FPSt - PSFt + FQFt;
|
||
|
P[1][0] += A*P[1][0] - F*P[1][1];
|
||
|
P[1][1] += Q[1];
|
||
|
}
|
||
|
|
||
|
void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
|
||
|
const vec3_t p(x[0]);
|
||
|
// measured vector in body space: h(p) = A(p)*Bi
|
||
|
const mat33_t A(MRPsToMatrix(p));
|
||
|
const vec3_t Bb(A*Bi);
|
||
|
|
||
|
// Sensitivity matrix H = dh(p)/dp
|
||
|
// H = [ L 0 ]
|
||
|
const float ptp(dot_product(p,p));
|
||
|
const mat33_t px(crossMatrix(p, 0.5f*(ptp-1)));
|
||
|
const mat33_t ppt(p*transpose(p));
|
||
|
const mat33_t L((8 / sqr(1+ptp))*crossMatrix(Bb, 0)*(ppt-px));
|
||
|
|
||
|
// update...
|
||
|
const mat33_t R(sigma*sigma);
|
||
|
const mat33_t S(scaleCovariance(L, P[0][0]) + R);
|
||
|
const mat33_t Si(invert(S));
|
||
|
const mat33_t LtSi(transpose(L)*Si);
|
||
|
|
||
|
vec<mat33_t, 2> K;
|
||
|
K[0] = P[0][0] * LtSi;
|
||
|
K[1] = transpose(P[1][0])*LtSi;
|
||
|
|
||
|
const vec3_t e(z - Bb);
|
||
|
const vec3_t K0e(K[0]*e);
|
||
|
const vec3_t K1e(K[1]*e);
|
||
|
|
||
|
if (!checkState(K0e))
|
||
|
return;
|
||
|
|
||
|
if (!checkState(K1e))
|
||
|
return;
|
||
|
|
||
|
x[0] += K0e;
|
||
|
x[1] += K1e;
|
||
|
|
||
|
// P -= K*H*P;
|
||
|
const mat33_t K0L(K[0] * L);
|
||
|
const mat33_t K1L(K[1] * L);
|
||
|
P[0][0] -= K0L*P[0][0];
|
||
|
P[1][1] -= K1L*P[1][0];
|
||
|
P[1][0] -= K0L*P[1][0];
|
||
|
}
|
||
|
|
||
|
// -----------------------------------------------------------------------
|
||
|
|
||
|
}; // namespace android
|
||
|
|