759 lines
25 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compile/Png.h"
#include <android-base/errors.h>
#include <android-base/macros.h>
#include <png.h>
#include <zlib.h>
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
namespace aapt {
// Size in bytes of the PNG signature.
constexpr size_t kPngSignatureSize = 8u;
/**
* Custom deleter that destroys libpng read and info structs.
*/
class PngReadStructDeleter {
public:
explicit PngReadStructDeleter(png_structp readPtr, png_infop infoPtr)
: mReadPtr(readPtr), mInfoPtr(infoPtr) {}
~PngReadStructDeleter() {
png_destroy_read_struct(&mReadPtr, &mInfoPtr, nullptr);
}
private:
png_structp mReadPtr;
png_infop mInfoPtr;
DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter);
};
/**
* Custom deleter that destroys libpng write and info structs.
*/
class PngWriteStructDeleter {
public:
explicit PngWriteStructDeleter(png_structp writePtr, png_infop infoPtr)
: mWritePtr(writePtr), mInfoPtr(infoPtr) {}
~PngWriteStructDeleter() { png_destroy_write_struct(&mWritePtr, &mInfoPtr); }
private:
png_structp mWritePtr;
png_infop mInfoPtr;
DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter);
};
// Custom warning logging method that uses IDiagnostics.
static void logWarning(png_structp pngPtr, png_const_charp warningMsg) {
IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(pngPtr);
diag->warn(DiagMessage() << warningMsg);
}
// Custom error logging method that uses IDiagnostics.
static void logError(png_structp pngPtr, png_const_charp errorMsg) {
IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(pngPtr);
diag->error(DiagMessage() << errorMsg);
}
static void readDataFromStream(png_structp pngPtr, png_bytep buffer,
png_size_t len) {
io::InputStream* in = (io::InputStream*)png_get_io_ptr(pngPtr);
const void* inBuffer;
int inLen;
if (!in->Next(&inBuffer, &inLen)) {
if (in->HadError()) {
std::string err = in->GetError();
png_error(pngPtr, err.c_str());
}
return;
}
const size_t bytesRead = std::min(static_cast<size_t>(inLen), len);
memcpy(buffer, inBuffer, bytesRead);
if (bytesRead != static_cast<size_t>(inLen)) {
in->BackUp(inLen - static_cast<int>(bytesRead));
}
}
static void writeDataToStream(png_structp pngPtr, png_bytep buffer,
png_size_t len) {
io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(pngPtr);
void* outBuffer;
int outLen;
while (len > 0) {
if (!out->Next(&outBuffer, &outLen)) {
if (out->HadError()) {
std::string err = out->GetError();
png_error(pngPtr, err.c_str());
}
return;
}
const size_t bytesWritten = std::min(static_cast<size_t>(outLen), len);
memcpy(outBuffer, buffer, bytesWritten);
// Advance the input buffer.
buffer += bytesWritten;
len -= bytesWritten;
// Advance the output buffer.
outLen -= static_cast<int>(bytesWritten);
}
// If the entire output buffer wasn't used, backup.
if (outLen > 0) {
out->BackUp(outLen);
}
}
std::unique_ptr<Image> readPng(IAaptContext* context, io::InputStream* in) {
// Read the first 8 bytes of the file looking for the PNG signature.
// Bail early if it does not match.
const png_byte* signature;
int bufferSize;
if (!in->Next((const void**)&signature, &bufferSize)) {
context->getDiagnostics()->error(
DiagMessage() << android::base::SystemErrorCodeToString(errno));
return {};
}
if (static_cast<size_t>(bufferSize) < kPngSignatureSize ||
png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
context->getDiagnostics()->error(
DiagMessage() << "file signature does not match PNG signature");
return {};
}
// Start at the beginning of the first chunk.
in->BackUp(bufferSize - static_cast<int>(kPngSignatureSize));
// Create and initialize the png_struct with the default error and warning
// handlers.
// The header version is also passed in to ensure that this was built against
// the same
// version of libpng.
png_structp readPtr =
png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (readPtr == nullptr) {
context->getDiagnostics()->error(
DiagMessage() << "failed to create libpng read png_struct");
return {};
}
// Create and initialize the memory for image header and data.
png_infop infoPtr = png_create_info_struct(readPtr);
if (infoPtr == nullptr) {
context->getDiagnostics()->error(
DiagMessage() << "failed to create libpng read png_info");
png_destroy_read_struct(&readPtr, nullptr, nullptr);
return {};
}
// Automatically release PNG resources at end of scope.
PngReadStructDeleter pngReadDeleter(readPtr, infoPtr);
// libpng uses longjmp to jump to an error handling routine.
// setjmp will only return true if it was jumped to, aka there was
// an error.
if (setjmp(png_jmpbuf(readPtr))) {
return {};
}
// Handle warnings ourselves via IDiagnostics.
png_set_error_fn(readPtr, (png_voidp)context->getDiagnostics(), logError,
logWarning);
// Set up the read functions which read from our custom data sources.
png_set_read_fn(readPtr, (png_voidp)in, readDataFromStream);
// Skip the signature that we already read.
png_set_sig_bytes(readPtr, kPngSignatureSize);
// Read the chunk headers.
png_read_info(readPtr, infoPtr);
// Extract image meta-data from the various chunk headers.
uint32_t width, height;
int bitDepth, colorType, interlaceMethod, compressionMethod, filterMethod;
png_get_IHDR(readPtr, infoPtr, &width, &height, &bitDepth, &colorType,
&interlaceMethod, &compressionMethod, &filterMethod);
// When the image is read, expand it so that it is in RGBA 8888 format
// so that image handling is uniform.
if (colorType == PNG_COLOR_TYPE_PALETTE) {
png_set_palette_to_rgb(readPtr);
}
if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8) {
png_set_expand_gray_1_2_4_to_8(readPtr);
}
if (png_get_valid(readPtr, infoPtr, PNG_INFO_tRNS)) {
png_set_tRNS_to_alpha(readPtr);
}
if (bitDepth == 16) {
png_set_strip_16(readPtr);
}
if (!(colorType & PNG_COLOR_MASK_ALPHA)) {
png_set_add_alpha(readPtr, 0xFF, PNG_FILLER_AFTER);
}
if (colorType == PNG_COLOR_TYPE_GRAY ||
colorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
png_set_gray_to_rgb(readPtr);
}
if (interlaceMethod != PNG_INTERLACE_NONE) {
png_set_interlace_handling(readPtr);
}
// Once all the options for reading have been set, we need to flush
// them to libpng.
png_read_update_info(readPtr, infoPtr);
// 9-patch uses int32_t to index images, so we cap the image dimensions to
// something
// that can always be represented by 9-patch.
if (width > std::numeric_limits<int32_t>::max() ||
height > std::numeric_limits<int32_t>::max()) {
context->getDiagnostics()->error(DiagMessage()
<< "PNG image dimensions are too large: "
<< width << "x" << height);
return {};
}
std::unique_ptr<Image> outputImage = util::make_unique<Image>();
outputImage->width = static_cast<int32_t>(width);
outputImage->height = static_cast<int32_t>(height);
const size_t rowBytes = png_get_rowbytes(readPtr, infoPtr);
assert(rowBytes == 4 * width); // RGBA
// Allocate one large block to hold the image.
outputImage->data =
std::unique_ptr<uint8_t[]>(new uint8_t[height * rowBytes]);
// Create an array of rows that index into the data block.
outputImage->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]);
for (uint32_t h = 0; h < height; h++) {
outputImage->rows[h] = outputImage->data.get() + (h * rowBytes);
}
// Actually read the image pixels.
png_read_image(readPtr, outputImage->rows.get());
// Finish reading. This will read any other chunks after the image data.
png_read_end(readPtr, infoPtr);
return outputImage;
}
/**
* Experimentally chosen constant to be added to the overhead of using color
* type
* PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette
* chunk.
* Without this, many small PNGs encoded with palettes are larger after
* compression than
* the same PNGs encoded as RGBA.
*/
constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u;
// Pick a color type by which to encode the image, based on which color type
// will take
// the least amount of disk space.
//
// 9-patch images traditionally have not been encoded with palettes.
// The original rationale was to avoid dithering until after scaling,
// but I don't think this would be an issue with palettes. Either way,
// our naive size estimation tends to be wrong for small images like 9-patches
// and using palettes balloons the size of the resulting 9-patch.
// In order to not regress in size, restrict 9-patch to not use palettes.
// The options are:
//
// - RGB
// - RGBA
// - RGB + cheap alpha
// - Color palette
// - Color palette + cheap alpha
// - Color palette + alpha palette
// - Grayscale
// - Grayscale + cheap alpha
// - Grayscale + alpha
//
static int pickColorType(int32_t width, int32_t height, bool grayScale,
bool convertibleToGrayScale, bool hasNinePatch,
size_t colorPaletteSize, size_t alphaPaletteSize) {
const size_t paletteChunkSize = 16 + colorPaletteSize * 3;
const size_t alphaChunkSize = 16 + alphaPaletteSize;
const size_t colorAlphaDataChunkSize = 16 + 4 * width * height;
const size_t colorDataChunkSize = 16 + 3 * width * height;
const size_t grayScaleAlphaDataChunkSize = 16 + 2 * width * height;
const size_t paletteDataChunkSize = 16 + width * height;
if (grayScale) {
if (alphaPaletteSize == 0) {
// This is the smallest the data can be.
return PNG_COLOR_TYPE_GRAY;
} else if (colorPaletteSize <= 256 && !hasNinePatch) {
// This grayscale has alpha and can fit within a palette.
// See if it is worth fitting into a palette.
const size_t paletteThreshold = paletteChunkSize + alphaChunkSize +
paletteDataChunkSize +
kPaletteOverheadConstant;
if (grayScaleAlphaDataChunkSize > paletteThreshold) {
return PNG_COLOR_TYPE_PALETTE;
}
}
return PNG_COLOR_TYPE_GRAY_ALPHA;
}
if (colorPaletteSize <= 256 && !hasNinePatch) {
// This image can fit inside a palette. Let's see if it is worth it.
size_t totalSizeWithPalette = paletteDataChunkSize + paletteChunkSize;
size_t totalSizeWithoutPalette = colorDataChunkSize;
if (alphaPaletteSize > 0) {
totalSizeWithPalette += alphaPaletteSize;
totalSizeWithoutPalette = colorAlphaDataChunkSize;
}
if (totalSizeWithoutPalette >
totalSizeWithPalette + kPaletteOverheadConstant) {
return PNG_COLOR_TYPE_PALETTE;
}
}
if (convertibleToGrayScale) {
if (alphaPaletteSize == 0) {
return PNG_COLOR_TYPE_GRAY;
} else {
return PNG_COLOR_TYPE_GRAY_ALPHA;
}
}
if (alphaPaletteSize == 0) {
return PNG_COLOR_TYPE_RGB;
}
return PNG_COLOR_TYPE_RGBA;
}
// Assigns indices to the color and alpha palettes, encodes them, and then
// invokes
// png_set_PLTE/png_set_tRNS.
// This must be done before writing image data.
// Image data must be transformed to use the indices assigned within the
// palette.
static void writePalette(png_structp writePtr, png_infop writeInfoPtr,
std::unordered_map<uint32_t, int>* colorPalette,
std::unordered_set<uint32_t>* alphaPalette) {
assert(colorPalette->size() <= 256);
assert(alphaPalette->size() <= 256);
// Populate the PNG palette struct and assign indices to the color
// palette.
// Colors in the alpha palette should have smaller indices.
// This will ensure that we can truncate the alpha palette if it is
// smaller than the color palette.
int index = 0;
for (uint32_t color : *alphaPalette) {
(*colorPalette)[color] = index++;
}
// Assign the rest of the entries.
for (auto& entry : *colorPalette) {
if (entry.second == -1) {
entry.second = index++;
}
}
// Create the PNG color palette struct.
auto colorPaletteBytes =
std::unique_ptr<png_color[]>(new png_color[colorPalette->size()]);
std::unique_ptr<png_byte[]> alphaPaletteBytes;
if (!alphaPalette->empty()) {
alphaPaletteBytes =
std::unique_ptr<png_byte[]>(new png_byte[alphaPalette->size()]);
}
for (const auto& entry : *colorPalette) {
const uint32_t color = entry.first;
const int index = entry.second;
assert(index >= 0);
assert(static_cast<size_t>(index) < colorPalette->size());
png_colorp slot = colorPaletteBytes.get() + index;
slot->red = color >> 24;
slot->green = color >> 16;
slot->blue = color >> 8;
const png_byte alpha = color & 0x000000ff;
if (alpha != 0xff && alphaPaletteBytes) {
assert(static_cast<size_t>(index) < alphaPalette->size());
alphaPaletteBytes[index] = alpha;
}
}
// The bytes get copied here, so it is safe to release colorPaletteBytes at
// the end of function
// scope.
png_set_PLTE(writePtr, writeInfoPtr, colorPaletteBytes.get(),
colorPalette->size());
if (alphaPaletteBytes) {
png_set_tRNS(writePtr, writeInfoPtr, alphaPaletteBytes.get(),
alphaPalette->size(), nullptr);
}
}
// Write the 9-patch custom PNG chunks to writeInfoPtr. This must be done before
// writing image data.
static void writeNinePatch(png_structp writePtr, png_infop writeInfoPtr,
const NinePatch* ninePatch) {
// The order of the chunks is important.
// 9-patch code in older platforms expects the 9-patch chunk to
// be last.
png_unknown_chunk unknownChunks[3];
memset(unknownChunks, 0, sizeof(unknownChunks));
size_t index = 0;
size_t chunkLen = 0;
std::unique_ptr<uint8_t[]> serializedOutline =
ninePatch->serializeRoundedRectOutline(&chunkLen);
strcpy((char*)unknownChunks[index].name, "npOl");
unknownChunks[index].size = chunkLen;
unknownChunks[index].data = (png_bytep)serializedOutline.get();
unknownChunks[index].location = PNG_HAVE_PLTE;
index++;
std::unique_ptr<uint8_t[]> serializedLayoutBounds;
if (ninePatch->layoutBounds.nonZero()) {
serializedLayoutBounds = ninePatch->serializeLayoutBounds(&chunkLen);
strcpy((char*)unknownChunks[index].name, "npLb");
unknownChunks[index].size = chunkLen;
unknownChunks[index].data = (png_bytep)serializedLayoutBounds.get();
unknownChunks[index].location = PNG_HAVE_PLTE;
index++;
}
std::unique_ptr<uint8_t[]> serializedNinePatch =
ninePatch->serializeBase(&chunkLen);
strcpy((char*)unknownChunks[index].name, "npTc");
unknownChunks[index].size = chunkLen;
unknownChunks[index].data = (png_bytep)serializedNinePatch.get();
unknownChunks[index].location = PNG_HAVE_PLTE;
index++;
// Handle all unknown chunks. We are manually setting the chunks here,
// so we will only ever handle our custom chunks.
png_set_keep_unknown_chunks(writePtr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0);
// Set the actual chunks here. The data gets copied, so our buffers can
// safely go out of scope.
png_set_unknown_chunks(writePtr, writeInfoPtr, unknownChunks, index);
}
bool writePng(IAaptContext* context, const Image* image,
const NinePatch* ninePatch, io::OutputStream* out,
const PngOptions& options) {
// Create and initialize the write png_struct with the default error and
// warning handlers.
// The header version is also passed in to ensure that this was built against
// the same
// version of libpng.
png_structp writePtr =
png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (writePtr == nullptr) {
context->getDiagnostics()->error(
DiagMessage() << "failed to create libpng write png_struct");
return false;
}
// Allocate memory to store image header data.
png_infop writeInfoPtr = png_create_info_struct(writePtr);
if (writeInfoPtr == nullptr) {
context->getDiagnostics()->error(
DiagMessage() << "failed to create libpng write png_info");
png_destroy_write_struct(&writePtr, nullptr);
return false;
}
// Automatically release PNG resources at end of scope.
PngWriteStructDeleter pngWriteDeleter(writePtr, writeInfoPtr);
// libpng uses longjmp to jump to error handling routines.
// setjmp will return true only if it was jumped to, aka, there was an error.
if (setjmp(png_jmpbuf(writePtr))) {
return false;
}
// Handle warnings with our IDiagnostics.
png_set_error_fn(writePtr, (png_voidp)context->getDiagnostics(), logError,
logWarning);
// Set up the write functions which write to our custom data sources.
png_set_write_fn(writePtr, (png_voidp)out, writeDataToStream, nullptr);
// We want small files and can take the performance hit to achieve this goal.
png_set_compression_level(writePtr, Z_BEST_COMPRESSION);
// Begin analysis of the image data.
// Scan the entire image and determine if:
// 1. Every pixel has R == G == B (grayscale)
// 2. Every pixel has A == 255 (opaque)
// 3. There are no more than 256 distinct RGBA colors (palette).
std::unordered_map<uint32_t, int> colorPalette;
std::unordered_set<uint32_t> alphaPalette;
bool needsToZeroRGBChannelsOfTransparentPixels = false;
bool grayScale = true;
int maxGrayDeviation = 0;
for (int32_t y = 0; y < image->height; y++) {
const uint8_t* row = image->rows[y];
for (int32_t x = 0; x < image->width; x++) {
int red = *row++;
int green = *row++;
int blue = *row++;
int alpha = *row++;
if (alpha == 0) {
// The color is completely transparent.
// For purposes of palettes and grayscale optimization,
// treat all channels as 0x00.
needsToZeroRGBChannelsOfTransparentPixels =
needsToZeroRGBChannelsOfTransparentPixels ||
(red != 0 || green != 0 || blue != 0);
red = green = blue = 0;
}
// Insert the color into the color palette.
const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha;
colorPalette[color] = -1;
// If the pixel has non-opaque alpha, insert it into the
// alpha palette.
if (alpha != 0xff) {
alphaPalette.insert(color);
}
// Check if the image is indeed grayscale.
if (grayScale) {
if (red != green || red != blue) {
grayScale = false;
}
}
// Calculate the gray scale deviation so that it can be compared
// with the threshold.
maxGrayDeviation = std::max(std::abs(red - green), maxGrayDeviation);
maxGrayDeviation = std::max(std::abs(green - blue), maxGrayDeviation);
maxGrayDeviation = std::max(std::abs(blue - red), maxGrayDeviation);
}
}
if (context->verbose()) {
DiagMessage msg;
msg << " paletteSize=" << colorPalette.size()
<< " alphaPaletteSize=" << alphaPalette.size()
<< " maxGrayDeviation=" << maxGrayDeviation
<< " grayScale=" << (grayScale ? "true" : "false");
context->getDiagnostics()->note(msg);
}
const bool convertibleToGrayScale =
maxGrayDeviation <= options.grayScaleTolerance;
const int newColorType = pickColorType(
image->width, image->height, grayScale, convertibleToGrayScale,
ninePatch != nullptr, colorPalette.size(), alphaPalette.size());
if (context->verbose()) {
DiagMessage msg;
msg << "encoding PNG ";
if (ninePatch) {
msg << "(with 9-patch) as ";
}
switch (newColorType) {
case PNG_COLOR_TYPE_GRAY:
msg << "GRAY";
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
msg << "GRAY + ALPHA";
break;
case PNG_COLOR_TYPE_RGB:
msg << "RGB";
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
msg << "RGBA";
break;
case PNG_COLOR_TYPE_PALETTE:
msg << "PALETTE";
break;
default:
msg << "unknown type " << newColorType;
break;
}
context->getDiagnostics()->note(msg);
}
png_set_IHDR(writePtr, writeInfoPtr, image->width, image->height, 8,
newColorType, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
if (newColorType & PNG_COLOR_MASK_PALETTE) {
// Assigns indices to the palette, and writes the encoded palette to the
// libpng writePtr.
writePalette(writePtr, writeInfoPtr, &colorPalette, &alphaPalette);
png_set_filter(writePtr, 0, PNG_NO_FILTERS);
} else {
png_set_filter(writePtr, 0, PNG_ALL_FILTERS);
}
if (ninePatch) {
writeNinePatch(writePtr, writeInfoPtr, ninePatch);
}
// Flush our updates to the header.
png_write_info(writePtr, writeInfoPtr);
// Write out each row of image data according to its encoding.
if (newColorType == PNG_COLOR_TYPE_PALETTE) {
// 1 byte/pixel.
auto outRow = std::unique_ptr<png_byte[]>(new png_byte[image->width]);
for (int32_t y = 0; y < image->height; y++) {
png_const_bytep inRow = image->rows[y];
for (int32_t x = 0; x < image->width; x++) {
int rr = *inRow++;
int gg = *inRow++;
int bb = *inRow++;
int aa = *inRow++;
if (aa == 0) {
// Zero out color channels when transparent.
rr = gg = bb = 0;
}
const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa;
const int idx = colorPalette[color];
assert(idx != -1);
outRow[x] = static_cast<png_byte>(idx);
}
png_write_row(writePtr, outRow.get());
}
} else if (newColorType == PNG_COLOR_TYPE_GRAY ||
newColorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
const size_t bpp = newColorType == PNG_COLOR_TYPE_GRAY ? 1 : 2;
auto outRow = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
for (int32_t y = 0; y < image->height; y++) {
png_const_bytep inRow = image->rows[y];
for (int32_t x = 0; x < image->width; x++) {
int rr = inRow[x * 4];
int gg = inRow[x * 4 + 1];
int bb = inRow[x * 4 + 2];
int aa = inRow[x * 4 + 3];
if (aa == 0) {
// Zero out the gray channel when transparent.
rr = gg = bb = 0;
}
if (grayScale) {
// The image was already grayscale, red == green == blue.
outRow[x * bpp] = inRow[x * 4];
} else {
// The image is convertible to grayscale, use linear-luminance of
// sRGB colorspace:
// https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale
outRow[x * bpp] =
(png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
}
if (bpp == 2) {
// Write out alpha if we have it.
outRow[x * bpp + 1] = aa;
}
}
png_write_row(writePtr, outRow.get());
}
} else if (newColorType == PNG_COLOR_TYPE_RGB ||
newColorType == PNG_COLOR_TYPE_RGBA) {
const size_t bpp = newColorType == PNG_COLOR_TYPE_RGB ? 3 : 4;
if (needsToZeroRGBChannelsOfTransparentPixels) {
// The source RGBA data can't be used as-is, because we need to zero out
// the RGB
// values of transparent pixels.
auto outRow =
std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
for (int32_t y = 0; y < image->height; y++) {
png_const_bytep inRow = image->rows[y];
for (int32_t x = 0; x < image->width; x++) {
int rr = *inRow++;
int gg = *inRow++;
int bb = *inRow++;
int aa = *inRow++;
if (aa == 0) {
// Zero out the RGB channels when transparent.
rr = gg = bb = 0;
}
outRow[x * bpp] = rr;
outRow[x * bpp + 1] = gg;
outRow[x * bpp + 2] = bb;
if (bpp == 4) {
outRow[x * bpp + 3] = aa;
}
}
png_write_row(writePtr, outRow.get());
}
} else {
// The source image can be used as-is, just tell libpng whether or not to
// ignore
// the alpha channel.
if (newColorType == PNG_COLOR_TYPE_RGB) {
// Delete the extraneous alpha values that we appended to our buffer
// when reading the original values.
png_set_filler(writePtr, 0, PNG_FILLER_AFTER);
}
png_write_image(writePtr, image->rows.get());
}
} else {
assert(false && "unreachable");
}
png_write_end(writePtr, writeInfoPtr);
return true;
}
} // namespace aapt